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ABSTRACT
We investigate the use of machine learning (ML) and other robust-
estimation techniques in event studies conducted on single securities
for the purpose of securities litigation. Single-firm event studies are
widely used in civil litigation, with billions of dollars in settlements
hinging on the outcome of the exercise. We find that regularization
(equivalently, penalized estimation) can yield noticeable improve-
ments in both the variance of event-date abnormal returns and
significance-test power. Thus we believe that there is a role for
ML methods in event studies used in securities litigation. At the
same time, we find that ML-induced performance improvements are
smaller than those based on other good practices. Most important
are (i) the use of a peer index based on returns for firms in similar
industries (how this is computed appears to be less important than
that some version be included), and (ii) for significance testing,
using the SQ test proposed in Gelbach et al. (2013), because it
is robust to the considerable non-normality present in abnormal
returns.

Keywords: Event studies/market efficiency studies, financial econometrics,
asset pricing
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1 Introduction

The event study is one of the most frequently used tools employed by empir-
ical economists in testing the observable impact of events. Widely used by

ISSN 2380-5005; DOI 10.1561/108.00000047
©2020 A. Baker and J. B. Gelbach



232 Andrew Baker and Jonah B. Gelbach

researchers in finance, accounting, and the law, event studies are meant to
isolate the impact of a broad range of corporate events. They have provided
evidence on the consequences of legal and regulatory changes, the proposed
benefits and costs of mergers, and the implications of corporate takeover
policies. Event studies have also featured prominently in the decades-long
American experiment with private securities litigation.

The event study technique was first used in the 1960s by financial economists
to test the speed of adjustment of prices to new information, in particular
to the announcement of a stock split (Fama et al., 1969). While much has
changed over the intervening decades, the basic event study methodology
used by most practitioners has changed little. In a perfectly efficient market,
the price of a security reflects all available information known to the market,
so in such a market the price of a security will immediately respond to the
introduction of new information. And even in a market characterized by less
than perfect informational efficiency, it is reasonable to expect that newly
available material information will affect price quickly. After determining the
firms and dates subject to an event, an analyst can determine its impact by
calculating the difference between the realized return on the security, and the
prediction from a model of expected returns. This difference, often called
the abnormal or excess return, can be attributed to the impact of the event,
conditional on the adequacy of the model generating expected returns.

Although the academic literature featuring event studies as an empirical
device is long and developed, event studies by scholars writing for academic
readers have been used overwhelmingly to test the impact of events on a
broad cross-section of securities, rather than on one particular corporation’s
stock (Brav and Heaton, 2015). Inference in such studies is sometimes done
using flexible or nonparametric methods, but usually it is based on comparing
t-statistics to critical values of the Student’s t distribution. As Gelbach et al.
(2013) point out, that standard approach is justified only if at least one of
two conditions holds. First, if abnormal returns are normally distributed, the
Student’s t distribution is correct in finite samples. Unfortunately, there is
considerable evidence that abnormal returns are not in fact normal. Second, if
there are enough firms and dates that experience the event of interest so that
a central limit theorem can reasonably be expected to usefully apply to the
estimated event effect, then the estimated effect—which is an average of a sort—
will be approximately normal. However, Gelbach et al. (2013) observe that in
single-firm event studies used for litigation, each date of interest is functionally
an event study with only one firm-date combination. Consequently, the large-
sample justification for standard inferential approaches also fails. The result
is that the standard approach to inference yields invalid inference in single-
firm/single-event studies of the sort commonly used in securities litigation.

In light of the increased use of event studies for legal and regulatory
purposes, a nascent literature has developed exploring potential remedies for
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this and other problems. Gelbach et al. (2013) use Monte Carlo simulation
to demonstrate that the standard approach used by most analysts performs
poorly in terms of Type I and Type II error rates in the period of 2000–2007.
Baker (2016) explores the empirical properties of the standard event study
approach to returns on the securities of firms in the Dow 30 and S&P 500
industries during the financial crisis. He finds a consistent underestimation of
standard errors in the presence of shifting market volatility and inflated test
rejection rates. Brav and Heaton (2015) warn judges against having “unrealistic
expectations of litigants’ ability to quantitatively decompose observed price
impacts”. Finally, Fisch et al. (2018) explore the consequences of different
study design decisions, using the Halliburton case to show how attention to
oft-ignored methodological issues can have substantial implications for case
determinations.

This literature deals primarily with the inferential properties of single-firm
event studies, that is, how significance tests for event-date abnormal returns
perform in practice.1 This makes sense given that plaintiffs bringing securities
actions under SEC Rule 10b-5 must demonstrate reliance, materiality, and loss
causation, all of which often hinge in practice on proving that price moved on
dates when there were alleged material misrepresentations or disclosures of fact.
As a result, the modifications to the standard approach proposed in Gelbach
et al. (2013), Baker (2016) and Fisch et al. (2018) involve suggestions for more
robust estimates of the variance of abnormal returns and/or the critical values
used for testing statistical significance.2 However, these modifications focus
little attention on the estimators of the coefficients used to calculate the event-
date abnormal return.3 Given that the abnormal returns are the parameters
that determine the damage estimates in securities suits, it is worthwhile to
explore whether methods exist that can provide more accurate estimates of
the abnormal return itself.4

A main thrust of our argument in this paper is that event studies, as used in
securities litigation, can be viewed as out-of-sample prediction problems. This
is important because modern machine learning (ML) methods have proven quite

1An exception is Dove et al. (2019), who focus on issues involved in damages estimation.
2A different question is whether classical statistical significance testing is the right

approach to assessing whether there was price impact. Work by Gelbach and Hawkins
(2020) addresses this question from a Bayesian perspective. Gelbach and Fisch (2021) take
an alternative approach, suggesting that an allowable Type II error rate be specified for
benchmark fraud situations, with the Type I error rate determined by the nature of the
defendant firm’s abnormal returns distribution. For exposition’s sake, we ignore these
interesting points in this paper, although they could be incorporated in applications.

3To be sure, Baker (2016) proposes an FGLS event study method that yields different
coefficient estimates from the standard OLS ones. And Fisch et al. (2018) use a GARCH
model, which also yields different coefficient estimates. But these differences are essentially
byproducts of a focus on properly estimating second-moment properties, rather than the
coefficient estimates themselves.

4See Dove et al. (2019).
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useful for such problems; see, for example, Kleinberg et al. (2015). In this paper,
we consider whether recently (and not so recently) developed machine learning
techniques can improve estimation of expected returns in relevant metrics.

To illustrate the utility of doing so, consider two possible candidate speci-
fications for estimating the expected return, indexed by j ∈ {1, 2}. Let the
measure of the daily return for firm i on date t be rit, and let the vector of
variables used to predict rit be Xit. These predictor variables typically include
the market return and might also include the three additional Fama-French
and Carhart factors, as well as any other variables that might be used by
a sufficiently flexible prediction function.5 We assume that Xit includes a
1, which allows for a nonzero intercept if a specification’s algorithm would
choose that result. The key notational point is that every specification of
the prediction function, gj , can be viewed as mapping from the full set of
predictors to the daily return value, even though by design some gj functions
will effectively ignore some predictors. In all of the specifications we consider
below, the predictor variables enter linearly. Thus, we can write specification
gj(Xit) = X ′itβ

j for some coefficient vector βj .
With ζjit defined as the abnormal return–equivalently, the prediction error–

based on specification j, we have

rit = X ′itβ
j + ζjit. (1)

Given estimated coefficient vectors β̂j , the mean squared error of the
predicted abnormal return for specification j, ζ̂jit = rit −X ′itβ̂j = X ′it(β

j −
β̂j) + ζjit, may as usual be decomposed into the sum of a squared bias term
and a variance term (each conditional on the relevant data; we suppress the
conditioning information for notational clarity). Thus the mere fact that
Bias(ζ̂2)2 > Bias(ζ̂1)2 does not tell us the ordering of mean squared error. It
is possible that V (ζ̂2it) is enough lower than V (ζ̂1it) to make up for the difference
in bias. For example, under certain conditions the standard OLS estimator is
known to be the minimum-variance unbiased predictor. But that does not make

5According to the CAPM model, the only significant factor in explaining the cross-section
of returns is the sensitivity of a firm’s equity price to the contemporaneous return on the
market. However, as demonstrated in Fama and French (1996), there is persistent evidence
that other risk factors explain returns, and that the slope of the regression of a security’s
return on the market index (β) does not suffice to explain expected returns. A series of
papers by Fama and French promote including two additional variables, involving the returns
on long-short portfolios of securities sorted along size and valuation metrics. In addition,
the momentum factor proposed by Carhart (1997) is often included. This momentum factor
is based on the notion that there is short-term serial correlation in the market, where stocks
that have recently over-performed the market will continue to overperform the market. This
factor is similarly measured through a long-short portfolio of firms sorted by recent stock
market performance. Although it is rarely used in single-firm event studies for litigation
purposes, the Fama-French/Carhart “four-factor” model has been a workhorse of academic
finance, and we conduct all our simulations both with and without these factors.
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it the minimum MSE predictor, because enforcing unbiasedness is equivalent
to imposing a constraint on estimation that requires Bias2 = 0. Relaxing this
constraint will allow some additional bias, but with the potential payoff of a
large enough reduction in variance to reduce mean squared error. This is the
logic of using MSE as the basis for measuring prediction accuracy, and it is
the reason why ML estimators might outperform conventional least squares
estimators along that metric. This paper takes seriously such possibilities by
considering the MSE performance of a large variety of return models.

We note that MSE performance can be improved in multiple ways. One
is to provide a better functional form of the predicted return given data
Xit, for example, by either freeing up or constraining the value a regressor’s
coefficient is allowed to take. For example, some specifications we consider
restrict the coefficients so that peer firms’ returns enter only through an
equally-weighted index, whereas others allow each potential peer firm’s return
to have its own coefficient value. Another way to improve MSE performance
is to use a better way to estimate the parameters of a given model. Familiar
examples outside the machine learning literature are linear regression models
with non-sphericality, which might be estimated using FGLS to reduce the
variance of the coefficient estimator, and quantile regression-based estimation
when there is non-normality in residuals. The approaches we use in this paper
fall into both categories. Although all specifications we consider involve linear
mappings from the set of potential predictors to the target firm’s stock returns,
some of these specifications involve constraints that others don’t impose. The
specifications also differ in the regularization and optimization methods used.
To avoid conflating the distinct concepts of parameter constraints and and
estimation method, we use the word “specification” to refer to the combination
of both types of choices.

Given that event study specification selection can be conceptualized as
a prediction problem, there is good reason to think we can do better than
the specification commonly used in securities litigation involving the OLS
estimation of the simple market model. Work in computer science and statistics
has consistently demonstrated that OLS overfits data when used for prediction
purposes (Tibshirani, 1996). As noted above, OLS provides the best unbiased
linear prediction, but it does so at the price of greater out-of-sample variance
compared to other methods. That can lead to comparatively poor prediction
accuracy in the MSE metric. Machine learning methods accept some bias
in return for reducing out-of-sample variance. They do this by “training”
estimators to directly minimize out-of-sample prediction error.

Using real stock return data, we demonstrate that a number of out-of-the
box statistical approaches that are relatively easy to interpret perform better
than the standard, OLS-based event study specifications used in court proceed-
ings. We find that specifications using penalized regression generally perform
well. Specifications that adjust for daily market performance using data-driven
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peer indexes also generally perform well. Finally, we obtain generally good
performance from specifications that use a cross-validation technique that is
robust to otherwise unmodeled time-series properties of the data generating
process. The best specifications provide noticeable improvements over event
study approaches conventionally used in securities litigation.

Although we have not conducted any formal tests, a summary measure is
the relative out-of-sample MSE of predicted abnormal returns for the best-
performing model to the simplest “market model” specification (which happens
to be the generally worst-performing specification). The best-performing
specification on this metric makes use of both penalized regression and data-
driven peer firm choice. Its out-of-sample variance of predicted abnormal
returns is about 87–88% of the out-of-sample variance of predicted abnormal
returns for the simplest market model. Given the significance recently attached
to variance by Dove et al. (2019), this reduction in variance is of more than
academic significance: Large sums of money might (appropriately) turn on
it. That said, a 12–13% reduction in variance is perhaps best described as
modest, rather than huge.

We thus take a second approach to measuring the relative performance
of specifications. In securities litigation milestones such as class certification
or the motion to dismiss or summary judgment stages, courts often require
plaintiffs to show that abnormal returns are statistically significantly different
from 0 at levels such as 5% or 10%. We use our simulation evidence to evaluate
the performance of various specifications in this task. Let δ be the event-date
effect. Modifying (1) to account for this effect yields

rit = gj(Xit) + δDit + ζjit, (2)

where Dit is an indicator variable that equals 1 on an event date and 0
otherwise. (Notice that (1) and (2) are equivalent for non-event dates.)

We consider both the case in which there truly is no event effect, so that
δ = 0, and that in which firm value fell on the event date for reasons unrelated
to Xit, so that δ < 0. Of interest is the result of testing the null hypothesis
H0 : δ = 0 when this null is true (allowing us to evaluate actual test size) and
when it is false (allowing us to evaluate actual test power).

Following conventional practice, we first use the standard approach based
on normal critical values.6 Gelbach et al. (2013) point out that this approach is
invalid if abnormal returns are not truly normally distributed. They show that
there are nontrivial consequences of using the standard approach with real-
world abnormal returns, whose non-normality is widely known. Accordingly,

6Analysts often use Student’s t critical values instead, because the test statistic has a
Student’s t distribution under the normality assumption. Because we have a large number
of degrees of freedom, the difference between the critical values is negligible for practical
purposes.
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we also use the sample quantile (SQ) test proposed by Gelbach et al. (2013).
This test works under normality but also is robust to non-normality. Our
event-date test results provide several interesting findings.

First, across all specifications, the standard approach under-rejects a true
null hypothesis, whereas the SQ test performs almost perfectly across almost
all specifications. This is in line with what Gelbach et al. (2013) found using
only the simple market model specification, so perhaps it is not surprising.
However, in this paper we use a more recent testing period and restricted
set of firms, and we consider a more varied set of specifications (including
the Fama-French/Carhart factors). Accordingly, our present finding provides
additional evidence in favor of the relative superiority of the SQ test over the
standard t-test approach.

Second, we find that the specifications that had best performance in the
MSE metric also have noticeably better performance in the testing metric.
Third, though, this power difference is less than the improvement brought
by using the SQ test rather than the standard t-test approach; the latter
difference can be substantial for intermediate values of δ.

In sum, we find that ML specifications can improve on standard ones,
although to what might best be described as a moderate degree. We also
find additional evidence reinforcing the importance of other good practices in
conducting event studies for securities litigation. One is the inclusion of some
reasonable peer index. A second is that when testing for statistically significant
effects is an analyst’s objective, it matters how one tests. Using a method
that is robust to non-normality, namely the SQ test rather than standard
critical values from the Student’s t distribution, improves the performance
of ML specifications considerably. A final contribution of this paper is to
show that machine learning methods can usefully serve as a basis for choosing
which peer firms to include in an event study. As we discuss in Section 3,
this reduces what we term “expert degrees of freedom”, thereby mitigating the
battle-of-the-experts problem, at least partially.

2 Prior Literature

Event study methodology in finance began with a paper by Eugene Fama,
Lawrence Fisher, Michael Jensen, and Richard Roll in 1969. Theoretical articles
by Samuelson and Mandelbrot had demonstrated that securities trading on
exchanges exhibited indicia of efficiency, as reflected in their independence
properties, but there had been little actual empirical evidence of the speed of
price adjustment to specific forms of information entering the market. Fama
et al. (1969) used the presence of stock splits to test whether there was “unusual
behavior” in the return on a security in the months leading up to the split.
Notably, the event study format they used follows the same functional form
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as event studies used today in court proceedings, with the log of one plus an
individual security’s returns regressed on a constant and the log of one plus
the return on a market index.

Following Fama et al. (1969), thousands of articles have been published
in leading journals using event studies to isolate the impact of a broad range
of corporate events.7 Decades later, a parallel literature developed analyzing
the properties of the comparative statistical models used for event studies. A
pair of articles written by Stephen Brown and Jerold Warner compared the
ability of competing specifications to detect abnormal performance using both
monthly and daily data (Brown and Warner, 1980; Brown and Warner, 1985).
Brown and Warner’s 1985 paper, which has come to define the field, declared
that event studies presented few practical difficulties when conducted using
daily data. They showed that stock returns departed from normality, but still
they found OLS-based methods to be largely robust to parametric concerns
in applications of interest.

Subsequent studies tested the properties of event study methods, analyzing
how frequently different tests reject the null hypothesis of no abnormal perfor-
mance, and the power of specifications to detect abnormal performance when
imputed (Binder, 1998). Later empirical studies questioned the generalizability
of Brown and Warner’s results. Chandra et al. (1990) showed that the relative
equivalence in performance between the OLS/market model specification and
simpler approaches was a statistical artifact of that specification implementa-
tion. Moreover, subsequent research verified that abnormal returns were not
normally distributed, and suggested that in important situations, the Type I
error rate will be larger than the nominal level that holds when the assumption
of normality is correct. This is particularly true for stocks with high kurtosis
(Hein and Westfall, 2004), which is not surprising given the departure from
normality entailed by this distributional feature. Some scholars proposed using
non-parametric tests of abnormal performance to address non-normality in
many-firm studies, for example, rank and sign tests (Corrado, 1989).

Recently, scholars have scrutinized the application of academic event studies
in litigation. Corrado (2011) notes that single-security event studies rarely
arise in academic literature but are routinely proffered as evidence in court
proceedings. He advises legal practitioners to use a simple nonparametric
modifications to the event study procedure that would at least correct for the
non-normality of individual stock returns.

As discussed in the introduction, Gelbach et al. (2013) propose another
modification, which they termed the sample quantile (SQ) test. To perform a
lower-tailed version of this test with classical significance level α, one ranks the
estimated abnormal returns from the market model regression and determines

7Kothari and Warner (2007) report that over 500 papers containing event studies were
published between 1974 and 2000 in just the top five finance journals.
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whether the event-date abnormal return is more negative than the α-quantile
of the empirical distribution of estimated abnormal returns from the pre-event
window.8 Using a dataset containing the returns for all securities in the Center
for Research in Security Performance’s (CRSP) database from 2000 to 2007,
Gelbach et al. (2013) uncover substantial evidence of bias against finding
statistically significant abnormal returns.

Baker (2016) analyzes the performance of a group of event study speci-
fications over the financial crisis period of 2007–2009. He finds that when
volatility in the market shifts suddenly, standard specifications with a constant
estimation period and variance estimate will fail to reflect the changed nature
of stock returns. As a proposed remedy he suggests using either feasible gener-
alized least squares (FGLS) or an estimator that adjusts the standard error of
the t-statistic by the ratio of changes in market volatility to account for the
true variance of market model abnormal returns. Fisch et al. (2018) propose
dealing with this same issue using a generalized autoregressive conditional
heteroskedasticity (GARCH) estimator for the variance of daily returns and
then using daily estimates of the variance to obtain a normalized white noise
term to which the SQ test may then be applied.9 However, it is important
to note that none of the proposed remedies described above fundamentally
changes the estimation approach taken to predict the event-date abnormal
return itself. This is the province of the present paper.

3 The Benefits of Data-Driven Methods for Event Studies Used
in Litigation

In this section, we argue that the litigation setting is particularly well-suited
to the benefits of data-driven methodologies. Under the status quo approach,
plaintiffs and defendants hire expert witnesses who proffer empirical evidence
to the court regarding the relative merits of each side’s position. This inevitably
devolves into a “battle of the experts”, characterized by a seemingly intractable
divide between opposing experts over complicated and often subjective analyt-
ical decisions (Haw, 2012). A generalist court–or jury, in the rare cases that
get to one–is then required to settle the dispute between competing experts,
often leading to erroneous or case-specific decisions being built into precedent.

The data-driven approaches we explore in this paper have the advantage
that they eliminate certain subjective choices made by opposing experts in favor
of objective determinations of model fit based on a transparent and reasonable

8For an upper-tailed version, one determines whether the event-date abnormal return
is greater than the (1 − α)-quantile; for a two-sided version, one determines whether the
event-date abnormal return is between the (α/2)-quantile and (1− α/2)-quantile.

9We do not implement the GARCH approach in this paper, but we believe one could do
so with appropriate modifications.
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metric, out-of-sample prediction error. To be sure, this advantage applies not
only in adversarial litigation, but also in scholarly economic research, which in
recent years has begun to move toward data-driven decision procedures, for
example, with case study methods and the selection of nuisance parameters
in settings with many potential control variables (Abadie et al., 2010; Belloni
et al., 2013; Chernozhukov et al., 2018; Athey et al., 2018).

Transparent data-driven methods reduce what we call “expert degrees of
freedom”. In the securities litigation setting, these methods thus reduce the
ability of experts to generate differences in testimonial assessments solely
on subjective modeling choices or data restrictions. We focus here on the
composition of firms that enter the peer index used in event studies.

Experts testifying in securities litigation have often taken a different ap-
proach. Many of these experts advocate controlling for both overall market fac-
tors, though they do not usually include the FFC factors, and industry-level fac-
tors. In these studies, the two-factor model that includes returns for the broader
market as well as a set of firms in the firm’s own industry has become an empir-
ical standard. Each expert selects a set of firms to include in an industry peer
index, and each argues that the resulting index captures industry-wide move-
ments in asset returns that must be accounted for when estimating the counter-
factual abnormal performance for the defendant firm on event dates in question.
Such arguments may be based on seemingly compelling bases such as cross-firm
correlation or similarities in the firms’ businesses. But because experts know
who hired them, there is a reasonable concern that peer-index choices may have
been made in part due to bias, whether conscious or unconscious. Differences
in experts’ choice of peer selection drive differences in index construction, and
hence differences in the calculation of abnormal performance. Judges and
juries typically lack the expertise or information necessary to determine which
expert has selected the more appropriate peer index. The result is that in the
status quo, fact-finding about abnormal returns may be importantly driven
by the ability of experts to persuade in ways unrelated to econometric quality.

A data-driven approach can eliminate this problem. Rather than allowing
experts to subjectively choose a set of firms to serve as industry peers, data-
driven approaches leverage patterns in the underlying data to tell us explicitly
which return series are best able to predict the stock return using held-out data.
Courts should be interested in the best estimate of the counterfactual return
prediction, rather than which peers do or don’t enter an expert’s index. If it is
possible to agree on a performance metric–a metric for determining which peer
index composition is “best”–then it will be possible to use data-driven peer index
composition. Showing how to do this is an important contribution of this paper.

To demonstrate, assume there are two experts in a case — A and B. Both
conduct event studies to determine the abnormal returns for StockX on date
d0. Expert A selects a set of firms, GA, and a peer index, PA, calculated
as the equally-weighted average of the returns on the firms in GA; Expert B
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selects corresponding firms and peer index GB and PB . Each then uses OLS
to estimate the relationship between the defendant’s abnormal returns and
returns of market and peer indices. The experts estimate the parameters of

rXt = αk + βk1 ×mktt + βk2 × pkt + ζkit k ∈ {A,B},

where rXt is the return on StockX on day t, αk is a constant (the expected
return on the stock when the market and respective peer index returns are 0),
mktt is the return on the aggregate market index, and pkt is the return series
for the peer indices. After conducting this event study, each expert reports
the abnormal return on the event date, d0, as the difference in the realized
return and the predicted return from the fitted coefficients from their event
study model:

ˆζkd0 = rXd0 −
[
α̂k −

(
mktd0 pkd0

)(β̂k1
β̂k2

)]
.

A court or jury is then required to determine whether they find ζ̂Ad0 or ζ̂Bd0
more credible in light of the argument made for industry-index construction
by each expert.

A data-driven approach can reduce the scope of such discretion by using a
pre-specified algorithm to select which firms among a set GS of potential peers
to include; most algorithms also allow the weights on each included peer firm
to be set in a data-driven manner. The set of potential peer firms, GS , could
be the union of GA and GB, or perhaps all firms within a certain SIC-code
industry. What is important is that this set be broad enough to include all
firms that might reasonably serve as peers. Then a data-driven method can be
applied, allowing each of the firms in GS to enter the ultimate abnormal returns
model with whatever weight minimizes the algorithm’s objective function. The
algorithm does this selection using the estimation-period returns data and
applying cross-validation–multiple estimation passes using “folds” of held out
data–to determine optimal coefficients for the final least-squares estimation.

We think there are numerous potential benefits from this approach over
subjective peer-firm selection by experts:

• Data-driven methods use a transparent objective function which calcu-
lates predicted returns based on a clear measure of interest: the ability
of the predictors to explain stock returns. Once the universe of potential
peer firms is determined, the minimization problem becomes a determin-
istic function of the covariance structure in the data, thereby reducing
expert degrees of freedom.

• Data-driven methods are flexible, in that they assign weights to poten-
tial peer firms rather than assuming all firms contributed equally (or
proportionally to their market valuation) to a peer index.
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• Data-driven estimates allow optimal trade-offs of variance and bias while
avoiding overfitting.

• Data-driven estimates allow for a much larger set of potential peer firms
than can be used within a standard unpenalized linear framework, even
as they reduce expert degrees of freedom as described above.

4 Methodology

The steps necessary to conduct an event study have not changed substantially
since Fama et al. (1969). An analyst must first identify a return series covering
the event at issue, ensure that the stock trades frequently enough for each
return to cover only one day (or at most a few days), and establish the dates on
which the event occurred. There are then three steps to conducting an event
study: (1) defining the “event window”, (2) calculating the abnormal return
of the stock over the event window, and (3) testing for statistical significance
of the abnormal return.

Recall from (1) that we write expected returns for specification k as
rit = gk(Xit) + ζkit, where rit is the measure of the daily stock return, gk
is some function that captures the details of specification k, and ζkit is the
abnormal return under that specification on date t for firm i. If a constant
is present in gk, then E[ζit] = 0.10 As an example, the simple market model
specification is

gMM (Xit) = αMM +Mtβ
MM ,

so that the simple market model puts positive weight only the market-level
return (which does not vary with firm index, i), and the associated abnormal
return is

ζMM
it = rit − αMM +Mtβ

MM . (3)

When we view an event study as a prediction problem, our goal is to isolate
the portion of the event-date return that cannot be explained with available
variables in Xit. One way to understand ML methods is that they use more
flexible g functions for the expected return, compared to gMM . Another is to
think of them as using certain nonlinear alterations to the objective function
used for estimating the parameters of the function gk for specification k. As
noted above, we use the term “specification” to refer to the combination of
the function g–and, thus, the ways various predictor variables are allowed to
enter–the objective function, and the cross-validation algorithm used.

10We do not impose or assume the stronger assumption, E[ζMM
it |mktt] = 0. If this

assumption did hold, then in the absence of temporal dependence, the parameter βMM

could be understood as a causal effect; without the assumption, βMM is merely a linear
projection parameter. See Chapter 2 of Wooldridge (2002) on these matters.
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Below we consider a total of 22 specifications, each simulated 10,000 times
using 250 estimation-set observations on a firm’s daily returns and one out-
of-sample “event date” return. We define the period so that date 251 is always
the event date. The firms and event dates are randomly selected, so that event
date actual and abnormal returns are not systematically related to anything
about our specification choices. Of the 22 specifications, 11 include the Fama-
French and Carhart factors. The other 11, including the simple market model
specification described just above, do not. The exact ways we pick the 250
dates vary a bit with specification, as described in the discussion below.

Write i251(b) to indicate the firm (i)-date (t = 251) combination used as the
event-date for simulation replicate b ∈ {1, 2, . . . , 10,000}. Then the estimated
event-date abnormal return for specification k is ζ̂ki251(b). We take four ap-
proaches to comparing performance across models–two involving mean-squared
error of the estimated event-date abnormal return, and two involving the per-
formance of significance tests based on event-date abnormal return. We discuss
details of these approaches below, just before we report the corresponding
empirical results.

4.1 Specifications Used

As noted, we consider 22 specifications. There are 11 distinct approaches
to estimation, and for each of these we consider two specifications: one that
includes the three additional Fama-French and Carhart (FFC) variables, and
one that does not. Here we describe the 11 distinct specifications.11

For reference, Table 1 provides details on the specifications we discuss below;
the table includes columns with the specification acronym and number, as
well as information about the included explanatory variables and the objective
function used.

4.1.1 Specification 1—Market Model (MM)

This is the basic market model approach used widely in academic research
and by experts in litigation. It models the return on a stock as a function of
the return on a market index. Here we use the return on the S&P 500 Index
as a proxy for aggregate movement in the stock market. The specification for
the 250-day estimation window is:

rit = αMM + βMMmktit + ζMM
it , (4)

11In a prior version of this paper we considered a broader set of models, including non-
linear specifications such as random forests, and penalized quantile regression. Because
these models represent a somewhat substantial deviation from the standard linear regression
models used in practice, and in light of the fact that they did not demonstrate substantial
over-performance in our simulations, we have dropped them from consideration.
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with E[ζMM
it ] = 0 given the presence of the constant and the fact that the

parameters will be estimated using OLS. For date 251, the estimated (equiva-
lently, predicted) abnormal return is ri,251 − [α̂MM + β̂MM ×mkti,251], where
(α̂MM , β̂MM ) is the vector of OLS estimates of the coefficients in equation (4).

4.1.2 Specification 2—Market Model + Peer Index (MMPI)

In this simple extension to Specification 1 (MM), we add as a regressor the
equally-weighted daily return index from firms in the same SIC industry as firm
i, which we call peerit. This kind of peer index is commonly used in litigation.
We construct our version using all firms in the same 4-digit SIC industry as
firm i, unless there are fewer than eight such firms, in which case we use all
firms in the same 3-digit SIC industry as i.12 The return specification is:

rit = αMMPI + βMMPI
1 mktit + βMMPI

2 peerit + ζMMPI
it , (5)

and the abnormal returns are estimated as

ζ̂MMPI
it ≡ ri,251 − [α̂MMPI + β̂MMPI

1 ×mkti,251 + β̂MMPI
2 × peeri,251],

where (α̂MMPI , β̂MMPI
1 , β̂MMPI

2 ) is the vector of OLS estimates of the coeffi-
cients in equation (5).

4.1.3 Specification 3—Elastic Net Regularization with 2 Factor Model (ENR)

We now introduce our first regularized regression estimator. Regularized
regression alters the least-squares objective function by imposing a penalty on
coefficient magnitude. This has the effect of reducing overfitting. Specification
3 uses a form of penalized regression objective function known as elastic
net regularization. This form allows penalty weight on both the sum of
squared coefficients and the sum of their absolute value. Assuming there are p
coefficients to estimate, the residuals are ζit = rit −Xitβ, with β being a p× 1
column vector. Write ζit(c) for the residual value when c is used in place of β.
Then elastic net regularization entails choosing coefficients c to minimize the
objective function

Q(c; a, λ) ≡ ζi(c)′ζi(c) + λ

1− a
2

c′c+ a

p∑
j=1

|cj |

 , (6)

where a and λ are regularization parameters to be chosen as part of the
estimation. When a = 1, elastic net regularization is equivalent to lasso

12If there are fewer than five such firms we drop them from consideration.
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regression, which tends to set many coefficient estimates to zero (for this
reason lasso is often used for model selection). When a = 0, elastic net
regularization is equivalent to ridge regression, which tends to push coefficient
estimates toward each other.

We don’t have strong priors on whether lasso or ridge penalties are more
appropriate, so instead of choosing a value of a ex ante, we optimize over
it in the estimation, using a grid-search approach. To obtain our elastic
net regularization estimates of specification mean squared error, we do the
following for each set of 250 pre-event date observations:

1. Split the data into ten random groupings, known in the ML literature as
folds. Repeat this random folding ten different times.

2. For each of the values of a ∈ {0, 0.1, 0.2, . . . , 1} use the ten randomly
created folds with a procedure known as cross-validation, to find the
minimizing value of (c′, λ); call the resulting estimates, c∗(a) and λ∗(a).
Then compute the average value of the MSE corresponding to c∗(a) and
λ∗(a) over the ten random sets of folds; denote this MSE(a).

3. Denote as a∗ the value of a that yields the lowest MSE(a) among the
values from step 2, average over t.

4. Set β̂ENR equal to the estimates of the coefficients c with a = a∗ and
λ = λ∗(a∗), that is, β̂ENR = c∗(a∗).

5. Calculate the estimated abnormal returns using β̂ENR, that is, ζ̂ENRit(b) ≡
rit − β̂ENRXit.

Note that because we allow a ∈ {0, 1} in step 2, Specification 3 is strictly
more general than either lasso or ridge regression; if it does not select either
value of a, that means neither model can be optimal.

4.1.4 Specification 4—Elastic Net Regularization with Unconstrained Peer Firm
Returns (ENR-U)

This specification generalizes Specification 3 (ENR) by relaxing the constraint
that peer firms’ returns enter the specification through an equally weighted
returns index. Specification 4 (ENR-U) drops that constraint and estimates a
distinct coefficient for each peer firm’s daily return. Notice that this specifi-
cation nests Specification 3, because the peer firm index can be achieved by
setting the coefficient on each of the Npeer peer firms’ returns equal to N−1peer.
Thus specification 4 is a more flexible specification in terms of index creation
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than any specification whose regressor set is the market return and equally
weighted peer index.13

For Specification 4, we implement the unconstrained peer firm returns spec-
ification using the same elastic net regularization approach as in Specification
3. This means the vector of coefficients c used to calculate estimates of ζit(c)
has 2+Npeer+ k dimensions—one for a (the intercept), one for c1 (the market
return), one for each of the Npeer firm returns, and k = 3 for specifications
that include the 3 FFC factors, and 0 otherwise.

4.1.5 Specification 5—Regularization All Peer Firms and Forced Market Inclusion
(ENR-FMI)

This specification augments Specification 4 (ENR-U) by forcing the estimation
process to include the daily return of the market index variable. Depending
on the data, Specification 4’s algorithm might drop the market index regressor
before calculating final coefficient estimates. Specification 5 (ENR-FMI) differs
from specification 4 only by preventing this from occurring, so that the final
estimates are based on an estimation step that includes the daily return of
the market index in the regressor set. We investigate this specification out of
a belief that some experts and courts might insist that the market index be
part of the specification used to predict abnormal returns. Calculating the
ENR-FMI coefficient estimate is done using the same method as in specification
4, but with the penalty terms being λ · vj

(
1−a
2 c′c+ a

∑p
j=1 |cj |

)
where vj is

equal to 0 for the market index and 1 for all other regressors. Notice that
ENR-FMI is a restricted version of ENR-U, in the sense that nothing stops
ENR-U from settling on the ENR-FMI coefficients.

4.1.6 Specification 6—Two-Factor Model with Lasso-Based Equally Weighted Index
(ENR-LEW)

Specification 6 involves three steps. The first step of Specification 6 (ENR-
LEW) can be thought of as a version of specification 4’s (ENR-U) elastic net
regularization, except with a set to 1, so that we do lasso, which yields a set of
selected peer firms. In the second step, we take the first-step-selected firms and
use them to calculate an equally weighted peer index. The third step is to use
OLS estimation with this equally-weighted peer index whose constituent firms
were selected via the first-step lasso estimation. Specification 6 differs from

13Note that if a firm were to have more than 250 peer firms, including each firm individually
would be impossible. This is another way in which penalized regression is useful, because
it allows for more covariates than observations; it does so by dropping weakly correlated
controls from the estimation equation. This is one reason lasso is frequently used for model
selection problems.
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Specification 4 because in the latter specification we use the ENR-estimated
coefficients to weight peer firms’ daily returns, whereas in Specification 6 we
throw out those coefficient estimates and effectively replace them with 1/k,
where k is the number of firms selected for inclusion in the lasso step. We also
include the broad market index variable as a final-step predictor in the OLS
estimation.

4.1.7 Specification 7—Two-Factor Time-Series Cross-Validation (ENR-TSCV)

The penalized regression approaches described above estimate the penalization
parameters α and λ through conventional cross-validation. That method is
not always optimal with time series data, as it ignores any trend component
to the relationships. Various alternative cross-validation techniques have
been proposed to address this issue. Specification 7 (ENR-TSCV) uses the
“evaluation on a rolling forecasting origin” method.

In this procedure, a series of test sets consisting of a single observation
are used for cross-validation. The corresponding training set consists of only
those observations that occurred prior to the observation that forms the
test set. Thus, no future observations are used in constructing the forecast.
The following diagram illustrates the series of training and test sets. Blue
observations (to the left, for those reading in black and white) form the
training sets; each red observation that immediately follows a set of training
observations forms a test set (the gray observations to the right of each red
one are left out). Prediction accuracy is computed by averaging over test sets.

Specification 7 includes two factors–the broad market index and the equally
weighted peer index–and uses the elastic net regularization objective function.
Its only difference from Specification 3 is that Specification 7 uses the time-
series cross-validation method described above, whereas Specification 3 (ENR)
uses ordinary cross-validation.
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4.1.8 Specification 8—Time-Series Cross-Validation with Market Index and All
Peer (ENR-TSCV-U)

Specification 8 (ENR-TSCV-U) is the same specification as Specification 7
(ENR-TSCV), except that each peer firm’s return is allowed to enter individu-
ally rather than as an equally-weighted index. Thus it can also be viewed as
Specification 4 (ENR-U) but with time series cross-validation.

4.1.9 Specification 9—Lasso Regularization with Unconstrained Peer Firm Returns
(LASSO)

Specification 9 (LASSO) is the same as Specification 4 (ENR-U), except that
instead of using the grid search to implement elastic net regularization, we
simply set a to 1. We then use the imputed weights from the unconstrained
lasso model to predict returns out of sample.14

4.1.10 Specification 10—Synthetic Control (SYNTH)

Specification 10 (SYNTH) uses the synthetic controls approach from
Abadie et al. (2010), which uses “data-driven procedures to construct suitable
comparison groups” that “reduce discretion in the choice of the comparison
control units, forcing researchers to demonstrate the affinities between the
affected and unaffected units using observed quantifiable characteristics” (pp.
493–494). Stock return event studies rely solely on values of the control-unit
variables, that is, there are no control-specific covariates included as predic-
tors. Thus, the synthetic control method can be simplified to a “constrained
regression” approach as explained in Imbens and Doudchenko (2016).

The constrained-regression SYNTH specification also chooses weights for
the vector of included control variables, rCit , used in predicting the stock return
of the target firm, rit . The control variables are the broad market index return,
the returns of each potential peer firm, and possibly the Fama-French/Carhart
factors, using the following optimization routine:

ŵSY NTH = arg min
µ,w

{(
rit − µ− w

′
rCit

)′ (
rit − µ− w

′
rCit

)}

s.t. µ = 0,

N∑
i=1

wi = 1, and wi ≥ 0, i = 1, . . . , N

We include µ in the objective function in the previous display even though it
is constrained to be zero, in order to facilitate a comparison of the SYNTH

14The difference between Specification 8 and Specification 6 is that in Specification 8, we
use the lasso-selected coefficients themselves, rather than replacing them with equal weights
as we do in the second step of Specification 6.



250 Andrew Baker and Jonah B. Gelbach

specification with the ID specification discussed next. The SYNTH specification
finds the combination of controls within the convex hull that minimizes the
prediction error during the estimation period. It is similar to Specification
2 (MMPI), except that it allows weights on peer firms to vary rather than
constraining them to be equal. In order for SYNTH to isolate a unique set of
weights (the ŵSY NTH), it must constrain the weights to be positive and sum
to 1; it also does not allow an intercept term. Notice that this specification is
similar to ENR-U (Specification 4), except that ENR-U allows an intercept
and does not constrain the coefficients to be proper weights.

4.1.11 Specification 11—Imbens-Doudchenko (ID)

Specification 11, ID, is an estimator proposed by Imbens and Doudchenko
(2016), that allows researchers to relax some of the restrictions in Specification
10 (SYNTH): ID allows the weights to be negative, does not restrict the sum
of the weights, and allows for a nonzero intercept. The weights still minimize
the distance between treated and control units in the estimation period, using
elastic net regularization to deal with a potentially large number of control
units.

In fact, the Specification 11/ID objective function is identical to that used
in Specification 4/ENR-U; see equation (6). The difference between the two
specifications lies entirely in the method used to choose the regularization
parameters α and λ. Whereas ENR-U uses standard cross-validation, ID
treats each control unit—here, these are peer firm returns and any other
included variables—as a pseudo-treated unit to determine the optimal value
for the parameters, and then uses those weights to predict the outcome for the
pseudo-treated unit in the held out period. The performance of the model is
then evaluated by computing the average mean squared error over all predictor
variables, and the final values of the tuning parameters are those that minimize
this mean squared error.

5 Simulation Results

To test the relative predictive accuracy of the eleven specifications described
above, we select 10,000 unique firm-events at random over the period from
2009 to 2019 in the CRSP dataset. As discussed above, we index simulation
replications with b, and we denote the randomly selected event date for the bth
replication firm with date 251. As is common in the literature, we exclude all
unit investment trusts (SIC 6726), real estate investment trusts (SIC 6798), and
non-identifiable establishments (SIC 9999). In addition, to avoid the excessive
volatility associated with low-share-price firms, we restrict our sample to
observations with a trading price above $5. When selecting random event
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dates, we require the security in question to have a complete return series for
the 250 trading dates immediately preceding the event date for each simulation
replication. As mentioned above, in selecting peers, we use only other firms
with complete return series over the same period in the same four-digit SIC
industry. If there are fewer than eight such firms, we use peers in the same
three-digit SIC industry.

To evaluate specifications’ mean-squared error performance, we consider
two distinct metrics, and we calculate each over two time periods, with and
without the FFC factors. Thus we calculate 8 mean-squared error performance
measures for each specification. We describe the details of these simulations
below, but first it will be useful to present a summary graph in Figure 1. Each
gray circle plots the rank of a specification using one of the performance metrics
(these ranks are jittered for readability). The diamonds plot the average rank
for each specification over the 8 MSE performance metrics. Blue diamonds
represent specifications that use some combination of cross-validated penalized
regression and individual peer firms; red diamonds represent specifications
that do not use those features. Figure 1 shows that unconstrained penalized
regression models generally perform best. Notably, the standard CAPM market
model clearly performs the worst of our 11 specifications, even when we include
the FFC factors.

We turn now to our detailed results.

5.1 Comparison Approach 1: Abnormal Return Variance Normalized
Against the Simple Market Model’s Average Event-Date Variance

Recall that for simulation replication b, the firm-event date combination is
denoted by i251(b); we denote a generic date for the same firm, it(b). We
define the squared value of the abnormal return for specification k on firm-

date it(b) as ŵkit(b) ≡
(
ζ̂kit(b)

)2
. Using the convention that the event date is

labeled t = 251, the out-of-sample prediction of interest for specification k on
simulation replicate b is ŵki251(b). The estimated out-of-sample mean squared
error (MSE) for specification k over the b ∈ {1, 2, . . . , 10,000} replications is
thus:

M̂SE
k

oos ≡
1

10,000

10,000∑
i=1

ŵki251(b). (7)

For each specification k, we then compute the ratio of of the out-of-sample
MSE R̂koos as:

R̂koos ≡
M̂SE

k

oos

M̂SE
MM

oos

, (8)
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Figure 1: Distribution of Specification Ranks Across Models and Tests.
Note: Figure 1 plots specification ranks. Each specification has 8 MSE performance values:
two time periods (1999–2009 vs. 2009–2019), with and without the FFC factors, and two MSE
normalization approaches (R̂k

oos and R̂k
het, described below). Each gray dot represents a rank

from 1 to 11, and each rank is represented once for each of the eight time-period/FFC-factor/MSE-
metric combinations. The diamonds plot the specifications’ average ranks. Blue diamonds signify
models that allow firms to enter the regression function individually and use cross-validation and
penalized regression; red diamonds represent specifications that do not.

where the denominator is the out-of-sample MSE for Specification 1 without
the FFC factors. By construction the ratio in 8 is 1 for that specification, so
other specifications’ values of R̂koos may be regarded in terms of the percentage
reduction in out-of-sample variance they achieve by comparison to the simple
market model without the FFC factors.15

Figure 2 plots the values of R̂koos for the 11 models with (triangles) and
without (circles) the Fama-French Carhart (FFC) factors. The order in which
the specifications are listed on the vertical axis is determined by performance
in the specifications with the FFC factors, so that the specification reported
in the top row has the lowest value of R̂koos, and the one that appears in the
bottom row has the highest value. Figure 2 shows that the worst-performing
specification without the FFC factors is the simple market model. The best-
performing specification, both with and without the FFC factors, is ENR-U
(Specification 4). Recall that this specification uses penalization, targets
the squared value of the residual (i.e., variance), and allows the estimation
algorithm to select the coefficients on the broad market index as well as on each
peer firm. This is one of the more flexible penalized regression specifications

15As we will see momentarily, no specifications has R̂k
oos > 1.
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Figure 2: Ratios of Average Squared Residual to MM.

Note: Figure 2 plots the average value of R̂k
oos across specifications; this is the average squared

residual for each model divided by the average squared residual for the simple market model
(MM). The models are reported in order of their predictive power in the FFC models.

we considered; indeed, it nests all the others, so it is not surprising that it
performs best.

Other specifications are very close to ENR-U in performance terms, includ-
ing ID, ENR-FMI, ENR-TSCV-U, and LASSO. The ID model is very close to
ENR-U, differing only in its tuning procedure for penalization parameters. The
ENR-FMI specification differs from ENR-U only in that it forces the inclusion
of the broad market index in the final estimation. The ENR-TSCV-U specifica-
tion differs from ENR-U only in that it uses a more dynamically robust method
of cross-validation to select variables and estimate coefficients. Finally, LASSO
is equivalent to ENR-U with the stipulation that the hyperparameter a = 1 in
the maximization problem. The fact that these specifications perform similarly,
and better than the others, suggests the importance of flexibility in the way
peer firms enter, and in the use of cross-validation to select parameter values.

Most notably, all of the top performing models allow the peer firms to
enter the maximization problem individually, rather than being combined into
an index before estimation. When the FFC factors are included, the best
performing models have average event-date abnormal return variance equal to
roughly 85% of the variance for the simple market model without the FFC
factors. Without the FFC factors, each of the three specifications performs
worse by 1–2 percentage points. Finally, we note that including the FFC
factors helps, although including some measure for peer performance seems
even more important.
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5.2 Comparison Approach 2: Abnormal Return Variance Normalized
Against Within-Date In-Sample Variance of the MM Specification

Our second comparison approach is meant to deal with heteroskedasticity in
abnormal returns. There are some “event” dates, that is, i251(b) dates, on
which important events really did occur, and for unmodeled reasons. Abnormal
returns will be especially large on such days.16 One might worry that this
phenomenon will cause M̂SE

k

oos to be unduly sensitive to a relatively small
number of especially high-variance dates. We address this concern by using a
metric that normalizes within-date according to that simulation’s in-sample
MSE for the simple market model. One approach to such a normalization
would be to compute the average, across the 10,000 simulation replicates,
of the ratio of ŵki251(b) to ŵMM

i251(b), that is, the ratio for the simulated event
date. That should account for both in-sample (the 250 non-“event” dates
t ∈ {1, 2, . . . , 250}) and out-of-sample (the randomly selected “event” date,
t = 251) heteroskedasticity. But it also runs a risk. On any simulated
event date when Specification 1 happens to predict almost perfectly, the
denominator of ŵki251(b)/ŵ

MM
i251(b) will be close to 0, causing the overall ratio

to be extremely large. If that happens for purely random reasons, then our
normalized performance metric might be dominated by noise rather than signal.
To avoid this kind of effect, we instead use the following metric for each model
k:17

R̂khet ≡
1

10000

10000∑
b=1

 ŵki251(b)

M̂SE
MM

est(b)

 , (9)

where M̂SE
MM

est(b) ≡ 1
250

∑250
i=1 ŵit(b) is the average squared estimated abnormal

returns over the 250-day estimation window used in simulation replicate b for
the Market Model specification.

Notice that R̂koos and R̂khet differ. The R̂
k
het metric normalizes the squared

event date abnormal return by the in-sample estimate of the MSE for the
simple market model (i.e., the specification that includes only a constant and
the daily market return). R̂khet is the average over simulation replications
of a ratio, whereas its counterpart R̂koos is a ratio of averages.18 The R̂koos

16Similarly, some estimation windows in our simulations will encompass real events, which
will tend to cause the specifications we estimate to have especially poor out-of-sample fit.
That will exhibit in the form of apparently large squared residuals on our t = 251 days.

17Note that the subscript “het” on R̂k
het refers to the concern about heteroskedasticity

whose possibility motivates this metric.
18To put it slightly differently, R̂k

het normalizes within dates and then averages, whereas
R̂k

oos instead averages across dates and only then normalizes. This is why R̂k
oos is not simply

R̂k
het/R̂

MM
het .
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Figure 3: Mean Squared Error By Specification: 10,000 Simulations.
Note: Figure 3 plots the average normalized squared prediction error for our 11 candidate
specifications, i.e., R̂k

het. We plot the estimates both with (FFC) and without (No FFC) Fama-
French/Carhart Factors.

approach would be problematic if there is so much heteroskedasticity in event-
date abnormal returns that the variance from a small share of firm-date pairs
dominates the average of overall variances. As long as that is not the case,
R̂koos will be a meaningful measure of performance. Although we believe no
constraint forces the specifications to perform similarly with R̂koos as with
R̂khet, Figure 3 indicates that, broadly considered, they do. Because the R̂khet
denominator is constructed by averaging over a large sample of dates, it does
not engender the signal-to-noise problem described above.

Figure 3 plots the mean of the normalized prediction errors of the 11 models,
together with 95% confidence intervals. The order in which the specifications
are listed on the vertical axis is the same as Figure 2, to facilitate comparisons
with the R̂koos results.

Figure 3 shows that the worst-performing specification without the FFC
factors is still the simple market model. Notice that its value of R̂khet is
roughly 1.16, meaning that the out-of-sample variance of predicted event-date
abnormal returns for the simple market model is about 16% greater than the
in-sample variance for that same model. This difference between in-sample
and out-of-sample variance illustrates the empirical importance of overfitting.
In addition, the ranking of models follows a similar pattern as in Figure 2:
those models that performed best in terms of R̂koos also perform best in terms
of R̂khet. The ENR-U specification again performs best, both with and without
the FFC factors; its out-of-sample event-date abnormal return variance is
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roughly 97-98% of the in-sample variance of the simple market model; this is
good enough for an 84% reduction relative to the 1.16 value for Specification 1
without the FFC factors.

A group of models (ENR, MMPI, ENR-TSCV, and ENR-LEW) are ranked
below the top performing in relatively indistinguishably ways. All have out-
of-sample average normalized event-date abnormal return variance between
100% and 104% of the in-sample variance of the simple market model, with or
without the FFC factors included.

We can draw a number of lessons from Figures 2 and 3. One is that
regularization-based ML algorithms appear to reduce event-date abnormal
return variance. This conclusion should be tempered in two ways. First is that
the 95% confidence intervals in Figure 3 are quite wide, suggesting that some
of the reduction might be due to sampling and simulation noise. That said,
the different R̂khet numbers plotted in the figure are highly positively correlated
across specifications, so it is difficult to draw meaningful inferences based only
on model-specific confidence intervals.

A second lesson from Figure 3 is that although including the FFC factors
makes a comparatively large difference for the simple market model (MM),
doing so generally seems to be less important than including some sort of
peer-firm adjustment. To see this, consider the MMPI specification, which
uses standard OLS estimation in a specification that includes only the broad
market index and the equally-weighted peer index. This specification does
noticeably better without the FFC factors than the simple market model does
with them. The same is true for all the specifications that include some sort of
peer-firm adjustment.

Third, the best performing specifications are either forced to include the
broad market index or are allowed to estimate the role of peer firms in an
unrestricted manner (either of these is sufficient to perform better than the
base ENR specification). Fourth, it does not appear that time-series cross-
validation is per se important: although the ENR-TSCV-U specification is
in the top group, the ENR-TSCV specification is not; it performs about the
same as other estimators that use either standard cross-validation or don’t
use regularization at all–e.g., the MMPI specification, which uses unpenalized
estimation algorithms but includes both the market model and the equally-
weighted peer index. In sum, the best performance in Figures 2 and 3 comes
when regularization is paired with some sort of peer-firm adjustment and the
FFC factors.

5.3 Comparison Approach 3: Significance test performance using the
standard parametric testing approach

We have seen that regularization can enhance the precision of event study
abnormal return estimates. We now assess how important precision improve-
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ments are for significance tests of whether abnormal returns are different from
0. These tests are important in securities litigation, because class certification
and the resolution of motions to dismiss or for summary judgment may turn
on their results.

Comparison approach 3 considers both the Type I error rate, also known
as size, and the power (one minus the Type II error rate) of the standard
approach of comparing t-statistics to critical values based on the standard
normal distribution.19 To assess actual size with a nominal size-α test, on
each simulation replicate b we “reject” the null hypothesis of no event effect
whenever the ratio of the estimated event-date abnormal return to its estimated
standard error is less than the α-quantile of the standard normal distribution:

T̂ kb ≡
ζ̂ki251(b)

RMSEkb
< zα, (10)

where RMSEkb ≡
√∑250

t=1(ζ
k
bt)

2

250 is the in-sample estimate of the standard
deviation for the event-date abnormal return on simulation replicate b. We
then compute the share of our 10,000 simulation replicates on which this test
rejects. That share is the estimated size (equivalently, Type I error rate) of
specification k for a nominal size-α test.

To assess power, we adjust T̂ kb to account for the “true” magnitude of the
event effect that is of interest. Suppose events of interest cause firm value to
fall by the amount δ; then event-date returns would be rδi251 = rit − δ. We
consider drops of magnitude δ ∈ {.01, .02, .03, .05, .10}; given our use of logged
returns, this means we investigate power against events that cause firm value
to fall by approximately 1%, 2%, 3%, 5%, and 10%. The adjusted event-date
abnormal return is thus ζ̂k,δi251(b) = ζ̂ki251(b) − δ, and for our power analyses we

replace ζ̂ki251(b) with ζ̂
k,δ
i251(b) in the test condition in 10. Because the critical

value on the right hand side of that condition is fixed, the estimated rejection
rate will increase with the assumed magnitude of the event effect, i.e., for
power assessment we can think of the rejection rule as T̂ kb < zα + δ/RMSEkb .
Because δ ≥ 0, it follows that we will reject more frequently the greater is the
true effect magnitude, as usual. Finally, we note that size may be thought of
the rejection rate when δ = 0.

19In our simulations we do not adjust for the degrees of freedom of the model. This is
functionally irrelevant for the models that use solely indexes as independent variables, given
the number of degrees of freedom we have with 250 estimation dates. However, for models
that allow peer firms to enter the optimization individually (e.g. ENR-U or ID), this may
not always be the case depending on the number of potential peer firms and the optimized
penalty weights. However, addressing this would only lower the actual test size, which
Figure 4 shows is already below the desired level. Because degrees-of-freedom adjustments
involve a positive monotonic transformation, they do not affect the SQ test’s performance,
which suggests that analysts should use the SQ test when testing significance using penalized
regression based models.
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Figure 4: Power Analysis - Standard Approach Tests of Significance.
Note: Figure 4 plots the rejection frequencies for our 11 models, estimated with the inclusion
of Fama-French/Carhart factors. The parameter δ is the level of the event effect. Rejection is
based on the standard approach–comparing t-statistics to a standard normal critical value.

Figure 4 reports simulation results for the percentage of simulation repli-
cates on which these tests reject, using a significance level of α = 0.10, so
that zα = −1.28, and considering only the 11 specifications with the FFC
factors included. The dashed vertical line at 10% is the nominal size of the
test: when δ = 0, the null hypothesis of zero event effect is correct, and a
test with correct size would reject exactly 10% of the time. Instead, almost
all of the specifications reject considerably less often than that–only about
7-8% of the time. These findings as to substantial size distortions echo those
in Gelbach et al. (2013).

For values of δ above zero–i.e., when there really was an event effect–
there is some variation in performance across specifications. Most notably
the rightward drift of the other models’ rejection rates when the true event
effect is a drop in firm value of 1% (triangles), 2% (squares), or 3% (plus-
signs). The specifications’ rejection rates are reported in the same order they
were in Figure 2, so this rightward lean indicates that specifications with
lower abnormal return variance according to the R̂koos metric tend to have
higher power for small to moderate event-effect sizes. These differences might
be practically significant in real-world litigation, although investigating that
question directly is beyond the scope of the present paper. Finally, we note
that with effect sizes as large as 5% or 10%, it doesn’t much matter which
specification one uses–all have substantial power.
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5.4 Comparison Approach 4: Significance Test Performance Using the
Sample Quantile Test

The poor size of the standard approach tests exhibited in Figure 4 is unsurpris-
ing given (i) the well known non-normality of abnormal returns and (ii) the
arguments made and evidence provided in Gelbach et al. (2013). That paper
shows that when abnormal returns are non-normal, the standard approach –
t-tests using critical values based on the standard normal distribution – may
lead to serious size distortions like those we see in Figure 4.

Gelbach et al. (2013) propose an alternative, based on the sample quantiles
of the empirical distribution function (EDF) of estimated abnormal returns
from the estimation window. They term their test the SQ test, and they show
that as the number of dates in the estimation window grows, the SQ test’s size
converges to the nominal level. Thus the SQ test has asymptotically correct
size, where the asymptotics in question have to do with the estimation window
length.20

Although Gelbach et al. (2013) assumed that the return specification they
used was correct, introspection shows that that assumption is unnecessary for
the SQ test to have correct size. A simple informal argument will suffice for
present purposes. As long as the event date is just like estimation-window dates
but for the presence of an additive event effect, event-date abnormal returns
based on a fixed specification k will come from the same data generating
process as estimation-window returns, up to a location difference due to the
event effect. This location difference is zero under the null hypothesis anyway.
The Glivenko-Cantelli theorem then implies that the EDF of estimation-
window abnormal returns is a consistent estimator for the true distribution
function of the event-date abnormal return. Accordingly, the sample quantiles
of the estimation period are consistent estimators for the true quantiles of
the event-date abnormal return under the null hypothesis. And that means
that the sample α-quantile may be used as a critical value for testing the
null hypothesis of zero event effect. Because nothing about this argument
requires the specification in question to be correct, the SQ test should have
asymptotically correct size for each of the specifications we investigate here.

Figure 5 reports SQ test rejection rates for the same values of δ investigated
using the standard approach tests reported in Figure 4. As with the standard
approach tests, we use a nominal test size of α = 0.10. This is implemented in
the SQ test by comparing the event-date abnormal return on each simulation
replicate to a critical value that equals the 25th most negative estimated
abnormal return, because that value is the sample 0.10-quantile of abnormal
returns.

As expected, the figure shows that the Type I error percentages are virtually
identical to the nominal level of 10%. Not surprisingly, given the downward

20See also Conley and Taber, 2011, who prove a similar result in a more general setting.
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Figure 5: Power Analysis - SQ Test.
Note: Figure 5 plots the rejection frequencies for our 16 models, estimated with the inclusion of
Fama-French/Carhart factors. The parameter δ is the level of the event effect. Rejection is based
on the SQ test–comparing estimated event-date abnormal returns for each simulation replicate to
the 25th most negative estimated abnormal return from the estimation period for that replicate.

size distortions of the standard approach, the power performance of the SQ
test is also considerably better than that of the SQ test. For example, whereas
the standard approach led to rejection percentages clustered around 25% when
the true event effect was a drop in firm value of about 1%, for the SQ test
power clusters roughly around 35%. Power is noticeably elevated with the
SQ test against the other values of δ as well (with the exception of δ = 0.10,
which is enough to push the rejection rate to approximately 100% with both
testing approaches).

As with the standard approach, the results for the SQ test indicate that
specifications with lower prediction variance also have greater power for the
smaller true event effects. However, the power performance increase across
specifications is smaller than perhaps about half the performance increase
we obtain simply by switching to the SQ test. And note that using the SQ
test with the market model (bottom row of Figure 5) yields better power
against δ = 0.01 than does the best-performing specification (ENR-U) with
the standard approach (top row of Figure 4).

6 Further Results

In this section we investigate whether the price of variance reduction is a
substantial increase in the bias of estimated abnormal returns. Second, we test
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Figure 6: Average Residual By Model.
Note: Figure 6 plots the average event-date estimated abnormal return and the 95% confidence
level for our 11 models, with and without Fama-French/Carhart factors. For perspective, the
range of the x-axis is set equal to one standard deviation of the return series in our sample.

whether these results hold during a different time period when the volatility of
stock returns was noticeably different (1999-2009). Finally, we explore whether
regularization-based event study methods can provide performance increases
in academic cross-sectional regressions.

6.1 The Bias-Variance Tradeoff

Machine learning models tend to do better at prediction by allowing some
in-sample bias in return for reduced variance. As long as the increase in the
squared bias is smaller than the reduction in variance, the net impact will be
a reduction in mean squared error, because this is the sum of squared bias and
variance. If so, this could present a problem in the litigation context, because
disfavored litigants could reasonably argue that ML algorithms were biased
against them. Fairness to the parties is, after all, an additional constraint in
litigation.

Happily, this is an empirically testable possibility. To test it, we calculated
for each specification k the average value of the estimated event-date abnormal
return from each of the 10,000 simulations we conducted.21

21These averages are not identically 0 for any specification, because they involve out-
of-sample estimated residuals rather than in-sample ones. Of course in-sample estimated
residuals will have mean exactly equal to 0 for any specification whose final step uses
least-squares.
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Figure 7: Ratios of Average Squared Residual to MM in Crisis Period.

Note: Figure 7 plots the average value of R̂k
oos across specifications; this is the average squared

residual for each model divided by the average squared residual for the simple market model
(MM) during the Crisis Period of 1999-2009. The models are reported in order of their predictive
power in the FFC models.

Figure 6 shows these averages, with the range of the x-axis set equal to
one standard deviation of the return series in our sample.. The magnitudes
of deviation from zero involved are trivially small. Even the greatest mean
deviation from 0 appears to be no more than 0.0002, i.e., representing an
increment to daily returns of just 2 basis points, or roughly one percent of
the standard deviation of daily returns. We conclude that whatever bias is
induced by regularization is for practical purposes unimportant.

6.2 Results During The Financial Crisis Period

The simulation results in the earlier portion of this paper were conducted
during the most recent ten-year period of market return data (2009-2019).
While it makes sense to test our prediction models on recent return data,
this was a period of comparative market tranquility. In Figure 7 we replicate
the analysis from Figure 2 using data from the preceding ten year period
(1999-2009), which includes both the dot-com bubble and collapse and the
financial crisis. Figure 7 plots the ratio of the average out of sample mean
squared error for each model as a percentage of the out of sample mean squared
error for the Market Model (MM) specifications without FFC factors (R̂koos),
and is sorted vertically by model according to the value of R̂koos.

The results in Figure 7 are broadly consistent with those in Figure 2.
As there, the best performing models here are those that rely on penalized
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Figure 8: Mean Squared Error By Specification in Crisis Period: 10,000 Simulations.
Note: Figure 8 plots the average normalized squared prediction error for our 11 candidate
specifications, i.e., R̂k

het, during the Crisis Period. We plot the estimates both with (FFC) and
without (No FFC) Fama-French/Carhart Factors.

regression and which flexibly allow individual peer firms to enter the opti-
mization problem (ID, ENR-U, ENR-TSCV-U, and LASSO). One difference
during the financial crisis period is that the constrained-regression synthetic
control approach (SYNTH) performs materially worse; indeed it is one of
the worst performing models in relative terms. This suggests that relaxing
the constraints that require covariate coefficients to be proper weights may
be especially worthwhile during periods of market volatility. Lasso also does
poorly without the FFC factors, though it performs relatively well with them
included.

In Figure 8 we similarly replicate the analysis from Figure 3 for the Crisis
Period. Here, we plot estimates of R̂khet, which normalizes the squared event
date abnormal return by the in-sample estimate of the MSE for the simple
market model (i.e., the specification that includes only a constant and the
daily market return). Figure 8 plots the mean of the normalized prediction
errors of the 11 models over the Crisis Period (1999–2009), together with 95%
confidence intervals. The order in which the specifications are listed on the
vertical axis is now the same as Figure 7.

Again we see a general consistency between comparison approaches; the
models that perform best in terms of R̂koos also generally perform well in terms
of R̂khet. The best performing models in terms of R̂khet use regularization and
allow peer firms to enter the objective function individually, although SYNTH
performs better in terms of R̂khet than R̂

k
oos (especially when including FFC
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Figure 9: Relative Rankings of Models Across Time Periods.
Note: Figure 9 lists the 11 specifications in order of rank in the two time periods 1999-2009
and 2009-2019. The panels on the left show the relationship between ranks and time period for
models without FFC factors using the R̂k

oos and R̂k
het comparison measures respectively, while

the right panels show the same change in rankings for models using the FFC factors.

factors). In conclusion, it appears there is a consistent relationship between
model performance, even over two non-overlapping time periods.

To further demonstrate this correspondence, we map the relative ranking
of estimates between comparison method (R̂koos and R̂khet) and model inclusion
type (with and without FFC factors) over the two periods in Figure 9. While
there is some evidence of movement across the middle-to-low performing
models, the best performing models show consistency across time period and
model/test type.

6.3 Application to Cross-Sectional Event Studies

In the cross-sectional setting, analysts can generally rely on averaging over
many securities’ returns to remove non-normality and reduce variance. How-
ever, when the timing of events are concentrated in a short period, known
in the literature as event-date clustering, reliance on large sample properties
may be insufficient to remove other potential unobserved explanations for
changes in stock prices. Kolari and Pynnönen (2010) write, “it is advanta-
geous to use abnormal-return definitions that reduce cross-correlation to a
minimum to maximize the power of the test statistics.” Because the methods
proposed in this paper have the potential to remove more individual-level
unexplained variation in asset returns, it is ex ante plausible that their use
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could increase the power of cross-sectional event studies to detect abnormal
performance.

To test this hypothesis we perform a simulation design similar to those
used in the academic event study methodology literature (Brown and Warner,
1980; Brown and Warner, 1985; Kolari and Pynnönen, 2010). We create 1,000
independently drawn portfolios of 50 securities, with a common randomly
selected event date. Following Kolari and Pynnönen (2010) we set the “event
date” to 250 and use an estimation window of dates 1 through 239. Each
security in the sample must have at least 50 returns in estimation period to be
included in a portfolio, and cannot have any missing returns over the period
-10 to 10 (Kolari and Pynnönen, 2010). For each of the n = 50 securities in the
portfolio we estimate a separate event study over the estimation window, using
five candidate event study specifications in this paper (MM, MMPI, ENR-U,
LASSO, and ID). We chose these specifications to represent a mix of models
used in the standard approach (MM and MMPI), as well as a set of better
performing models that rely on penalized regression with minor differences
in tuning parameters (ENR-U, LASSO, ID). We then calculate an aggregate
portfolio-level test statistic for the significance of the randomly selected pseduo
event-date using three test statistics described in Kolari and Pynnönen (2010).

The unadjusted cross-sectional t-statistic (UNADJ) is defined as:

UNADJ =
AAR

√
N√

1
n

∑n
i=1 s

2
i (1 + dt)

where AAR is the average, non-scaled, abnormal return over the n = 50 secu-
rities in the portfolio, s2i is the regression model residual variance for security
i, and dt is a sampling error correction component of the form x

′

t(X
′
X)−1xt

resulting from the estimation of the regression parameters in the estimation
period, where xt is the vector of explanatory variable values on the event date
t, and X is the matrix of explanatory variable values during the estimation
period. This represents the classical cross-sectional test statistic used in most
academic event studies. This test statistic is given in equation 18 of Kolari
and Pynnönen (2010).

Parametric tests based on scaled abnormal returns (abnormal returns
divided by the standard deviation of estimation period residuals) have been
found to have superior power in detecting abnormal returns (Patell, 1976;
Boehmer et al., 1991). Thus we also consider the scaled abnormal returns
(SARs) statistic defined as:

Ait =
ARit

si
√
1 + dt

.

This statistic is given in equation 5 of Kolari and Pynnönen (2010). SARs
are used in the test-statistic proposed in Boehmer et al. (1991) (BMP), which
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defines the following alternative test-statistic:

BMP =
A
√
n

s

where A is the average of the scaled abnormal returns for the n = 50 securities
in the portfolio and s is the cross-sectional standard deviation of the event-date
scaled abnormal returns (i.e. s2 = 1

n−1
∑n
i=1

(
Ai −A

)2
). This test statistic is

given in equation 6 of Kolari and Pynnönen (2010).
Kolari and Pynnönen (2010) shows that with event-date clustering, even

low levels of residual cross-correlation between securities in the portfolio can
lead to overrejection of a true null hypothesis of zero average abnormal returns.
They propose a modified version of the BMP test statistic that takes into
account this cross-correlation and leads to more powerful tests. The adjusted
BMP test (ADJ-BMP) is defined as:

ADJ −BMP = BMP ·

√
1− r

1 + (n− 1)r

where n is again the number of securities in the portfolio (50) and r is the
average correlation of the model residuals across the 50 securities in the
portfolio during the estimation period. This test statistic is given in equation
11 of Kolari and Pynnönen (2010).

Using our simulated portfolio firms and dates, we calculate the cross-
sectional test statistics (UNADJ, BMP, and ADJ-BMP) for each of the MM,
MMPI, ENR-U, LASSO, and ID specifications. We then compute empirical
rejection rates using a two-tailed test of statistical significance and a 5%
significance level.22 We consider not only a true null hypothesis of zero effect,
but also a range of true alternative hypotheses involving non-zero mean effects.
In each portfolio the event date log return rit is replaced with rit + k for k
taking values in [−0.02, 0.02]. The rejection frequency is then calculated by
test statistic/specification/k combination as the percentage of portfolios for
which the null hypothesis of no abnormal return is rejected. A combination
with higher power will have higher rejection frequencies for a given level of
imputed abnormal performance k.

Table 2 reports empirical rejection rates against the true null hypothesis,
i.e., for the k = 0 case. The first column of the table shows that when we use the
UNADJ test statistic, all but the MMPI specification over-reject substantially.
This remains true when we use the BMP test statistic. Evidently neither of
these test statistics appropriately deals with intra-portfolio dependence in

22Above we used one-sided tests at a 10% significance level. Here we use the two-sided test
and the 5% significance level to facilitate comparison with other work in the non-litigation
literature.
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Table 2: Rejection Rates Against True Null, (Using 5% Significance Level).

Test-Statistic
Specification UNADJ BMP ADJ_BMP

MM 0.083 0.081 0.057
MMPI 0.059 0.059 0.058
ENR_U 0.091 0.097 0.055
LASSO 0.095 0.097 0.056
ID 0.090 0.094 0.059
Note: Each entry shows the rejection frequency against a true null hypothesis of zero event-date
effect for our five specifications (MM, MMPI, ENR-U, LASSO, and ID) using the three test statis-
tics derived in Kolari and Pynnönen (2010). UNADJ is the standard unadjusted cross-sectional
t-statistic common in the literature, BMP is the SAR-based test statistic from Boehmer et al.
(1991), and ADJ-BMP is the test statistic proposed by Kolari and Pynnönen (2010) that uses
both scaled abnormal returns and an adjustment for the residual cross-correlation among treated
securities. The rejection frequencies are based on a two-tailed test of statistical significance at
the 5% significance level.

Figure 10: Relative Rankings of Models Over Time Periods.
Note: Figure 10 plots the rejection frequencies for five selected specifications (MM, MMPI, ENR-
U, LASSO, and ID) using three test statistics derived in Kolari and Pynnönen (2010). UNADJ
is the standard unadjusted cross-sectional t-statistic common in the literature, BMP is the SAR-
based test statistic from Boehmer et al. (1991), and ADJ-BMP is the test statistic proposed
by Kolari and Pynnönen (2010) that uses both scaled abnormal returns and an adjustment for
the residual cross-correlation among treated securities. For each test-statistic we calculate the
rejection frequencies across our 1,000 portfolios of 50 randomly selected stocks for varying levels
of artificially imputed abnormal returns for each specification. The rejection frequencies are based
on a two-tailed test of statistical significance at the 5% significance level.

daily returns. By contrast, the ADJ_BMP tests reject between 5% and 6% of
the time for all five specifications, well within the 95% confidence interval for
the true null hypothesis.23

23With 1,000 simulation replications, the standard error of the empirical rejection rate
under the null hypothesis (that the true rejection probability is 0.05) is (.05× .95/1000)1/2 ≈
0.007, so a 95% confidence interval for the true rejection probability is roughly [0.036, 0.064].
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Figure 11: Relative Rankings of Models Over Time Periods.
Note: Figure 11 plots the rejection frequencies for five selected specifications (MM, MMPI, ENR-
U, LASSO, and ID) using three test statistics derived in Kolari and Pynnönen (2010). UNADJ
is the standard unadjusted cross-sectional t-statistic common in the literature, BMP is the SAR-
based test statistic from Boehmer et al. (1991), and ADJ-BMP is the test statistic proposed by
Kolari and Pynnönen (2010) that uses both scaled abnormal returns and an adjustment for the
residual cross-correlation among treated securities. For each of the five specifications we calculate
the rejection frequencies across our 1,000 portfolios of 50 randomly selected stocks for varying
levels of artificially imputed abnormal returns for each test-statistic. The rejection frequencies
are based on a two-tailed test of statistical significance and a 95% confidence level.

These results indicate that there is enough dependence that only the ADJ-
BMP test statistic yields reliable inference, regardless of the specification we
use (with the exception that for some reason the MMPI specification does well
with all three test statistics). Figure 10 plots empirical rejection rates for the
five specifications and three test statistics as we vary the true event effect k.
For a specification with higher power to detect abnormal performance, the
curve in the figure will lie above the curve for other specifications. The figure
suggests there are limited power differences across the five specifications, given
the test statistic used.

Figure 11, by contrast, depicts substantial power differences across test
statistics. Power is considerably lower for the UNADJ test statistic, regard-
less of specification. The BMP and ADJ-BMP tests have generally similar
power, although there is some variation across specifications in their relative
performance.

To sum up the results of our cross-sectional portfolio simulation, it is clear
that the test statistic matters, but given that one uses the ADJ_BMP test
statistic, we find little difference across specifications in either the size or
power performance. Thus, our evidence provides little reason to think the
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regularization-based methods proposed in this paper for the single-firm event
study context would yield much if any performance improvement for portfolio-
based event studies, provided that intra-portfolio dependence is accounted for.24

7 Conclusion

Event studies have been used extensively in research, and the academic con-
sensus is that they are powerful tools for detecting the impact of events on the
price of firms’ securities. Event studies are also widely used in civil litigation,
with billions of dollars in settlements ultimately hinging on the outcome of a
potentially flawed exercise. It is now well understood that because litigation-
relevant studies usually involve only a single date, those conducting event
studies for litigation should modify techniques created for academic use in
appropriate ways, especially when those techniques rely importantly on nor-
mality assumptions or central limit theorem applicability. It is also understood
that single-firm event studies have various problems related to the relatively
high abnormal return variance they involve.

In this paper we explore whether various machine learning and other
robust-estimation techniques can be used to enhance the predictive power of
abnormal return calculations in event studies conducted on single securities
for securities litigation. We find that estimation with regularization (also
called penalization) can yield modest reductions in event-date abnormal return
variance and improvements in test power. Our best-performing specification
reduces event-date abnormal return variance by about 15% relative to the
simple market model with no other variables included. It also has greater
power, with improvements in rejection rates on the order of a few percentage
points against moderately sized true event effects (e.g., 1-3 log points).

Although these modest gains could be valuable, they are smaller than
performance improvements realized by other modifications of the simplest
market model. First, simply including a peer index based on returns for firms
in related industries appears to make quite a large difference in prediction
variance, and a noticeable one in test performance. Including the Fama-
French/Carhart factors also brings improvement, although this is relatively
small once a peer index is included.

24We think this result likely can be explained with two observations. First, the daily
return variance for a 50-firm portfolio can be expected to be much less than that for a single
firm, even if there is substantial (imperfect) dependence. A lower baseline daily return
variance might be expected to afford less room for improvement via better peer choice, so
that ML methods have less room to improve on out-of-sample performance. Second, for
test rejection rates, central limit theory implies that the averaging involved in constructing
multiple-firm portfolios will push the daily return distribution toward normality. Thus
Student’s t critical values naturally should perform better in the portfolio case than in the
single-firm case, provided that the standard error is appropriately estimated.
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Second, performance on significance tests is markedly better using the
robust SQ test proposed by Gelbach et al. (2013) than when using the standard
t-test approach with critical values based on the normal (or Student’s t)
distribution. Using the SQ test eliminates size distortions that plague the
standard approach, and it also yields substantial power improvements for
smaller true event effect sizes.

In sum, empirical our findings indicate that ML methods can improve
single-firm event study performance in ways that could matter in litigation,
but they also show that ML methods are less important than previously
suggested improvements. Of course there is no reason one couldn’t, nor, thus,
shouldn’t take advantage of both those earlier improvements and ML methods,
and that is our advice. Finally, we emphasize that in light of the moderate
improvements presented above, arguably the most important argument in
favor using ML methods is their ability to reduce expert witnesses’ degrees
of freedom by providing an objective basis for determining how to control for
peer-firm performance.

References

Abadie, A., A. Diamond, Hainmueller, and Jens. 2010. “Synthetic control
methods for comparative case studies: Estimating the effect of California’s
Tobacco control program”. Journal of the American Statistical Association.
105(490): 493–505.

Athey, S., G. W. Imbens, and S. Wager. 2018. “Approximate residual balancing:
debiased inference of average treatment effects in high dimensions”. Journal
of the Royal Statistical Society. Series B: Statistical Methodology. 80(4):
597–623.

Baker, A. C. 2016. “Single-firm event studies, securities fraud, and financial
crisis: problems of inference”. Stanford Law Review. 68(January): 151–234.

Belloni, A., V. Chernozhukov, and C. Hansen. 2013. “Inference on treatment ef-
fects after selection among high-dimensional controls”. Review of Economic
Studies. 81(2): 608–650.

Binder, J. J. 1998. “The Event Study Methodology Since 1969”. Review of
Quantitative Finance and Accounting. 11: 111–137.

Boehmer, E., J. Musumeci, and A. B. Poulsen. 1991. “Event-study method-
ology under conditions of event-induced variance”. Journal of Financial
Economics. 30(2): 253–272.

Brav, A. and J. B. Heaton. 2015. “Event Studies in Securities Litigation: Low
Power, Confounding Effects, and Bias”. Washington University Law Review.
93: 583.

Brown, S. J. and J. B. Warner. 1980. “Measuring Security Price Performance”.
Journal of Financial Economics. 8: 205–258.



Machine Learning and Predicted Returns for Event Studies in Securities Litigation 271

Brown, S. J. and J. B. Warner. 1985. “Using Daily Stock Returns The Case of
Event Studies”. Journal of Financial Economics. 14: 3–31.

Carhart, M. M. 1997. “On Persistence in Mutual Fund Performance”. The
Journal of Finance. 52(1): 57–82.

Chandra, R., S. Moriarity, and G. Lee Willinger. 1990. “A Reexamination
of the Power of Alternative Return-Generating Models and the Effect of
Accounting for Cross-Sectional Dependencies in Event Studies”. Journal of
Accounting Research. 28(2): 398–408.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey,
and J. Robins. 2018. “Double/debiased machine learning for treatment and
structural parameters”. The Econometrics Journal. 21(1): C1–C68.

Conley, T. G. and C. R. Taber. 2011. “Inference with "difference in differences"
with a small number of policy changes”. Review of Economics and Statistics.
93(1): 113–125.

Corrado, C. J. 1989. “A Nonparametric Test for Abnormal Security-Price
Performance in Event Studies”. Journal of Financial Economics. 23(2):
385–395.

Corrado, C. J. 2011. “Event studies: A methodology review”. Accounting and
Finance. 51(1): 207–234.

Dove, T., D. Heath, and J. B. Heaton. 2019. “Bias-Corrected Estimation
of Price Impact in Securities Litigation”. American Law and Economics
Review. 21(1): 184–208.

Fama, E. F., L. Fisher, M. C. Jensen, and R. Roll. 1969. “The Adjustment of
Stock Prices to New Information”. International Economic Review. 10(1):
1–21.

Fama, E. F. and K. R. French. 1996. “The CAPM is Wanted, Dead or Alive”.
The Journal of Finance. LI(5).

Fisch, J. E., J. B. Gelbach, and J. Klick. 2018. “The Logic and Limits of Event
Studies in Securities Fraud Litigation”. Texas Law Review. 96: 553–621.

Gelbach, J. B. and J. E. Fisch. 2021. “Power and Stasticial Significance in
Securities Fraud Litigation”. Harvard Business Law Review.

Gelbach, J. B. and J. R. Hawkins. 2020. “A Bayesian Approach to Event
Studies for Securities Litigation”. Journal of Institutional and Theoretical
Economics. 176(1): 86–121.

Gelbach, J. B., E. Helland, and J. Klick. 2013. “Valid Inference in Single-Firm,
Single-Event Studies”. Tech. rep. No. 2. 495–541.

Haw, R. 2012. “Adversarial Economics in Antitrust Litigation: Losing Academic
Consensus in the Battle of the Experts”. Vanderbilt Law Review. 106(3).

Hein, S. E. and P. Westfall. 2004. “Improving Tests of Abnormal Returns by
Bootstrapping the Multivariate Regression Model with Event Paraments”.
Journal of Financial Econometrics. 2(3): 451–471.

Imbens, G. W. and N. Doudchenko. 2016. “Balancing, regression, difference-in-
differences and synthetic control methods: A synthesis”.



272 Andrew Baker and Jonah B. Gelbach

Kleinberg, J., J. Ludwig, S. Mullainathan, and Z. Obermeyer. 2015. “Prediction
Policy Problems †”. American Economic Review: Papers & Proceedings.
105(5): 491–495.

Kolari, J. W. and S. Pynnönen. 2010. “Event study testing with cross-sectional
correlation of abnormal returns”. Review of Financial Studies. 23(11): 3996–
4025.

Kothari, S. P. and J. B. Warner. 2007. “Econometrics of Event Studies”. In:
Handbook of Empirical Corporate Finance. Vol. 1. 3–36.

Patell, J. 1976. “Corporate Forecasts of Earnings Per Share and Stock Price
Behavior : Empirical Test”. Journal of Accounting Research. 14(2): 246–276.

Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso”. Source:
Journal of the Royal Statistical Society. Series B (Methodological). 58(1):
267–288.

Wooldridge, J. M. 2002. Econometric analysis of cross section and panel data.
MIT Press.


	Introduction
	Prior Literature
	The Benefits of Data-Driven Methods for Event Studies Usedin Litigation
	Methodology
	Specifications Used
	Specification 1—Market Model (MM)
	Specification 2—Market Model + Peer Index (MMPI)
	Specification 3—Elastic Net Regularization with 2 Factor Model (ENR)
	Specification 4—Elastic Net Regularization with Unconstrained Peer Firm Returns (ENR-U)
	Specification 5—Regularization All Peer Firms and Forced Market Inclusion (ENR-FMI)
	Specification 6—Two-Factor Model with Lasso-Based Equally Weighted Index (ENR-LEW)
	Specification 7—Two-Factor Time-Series Cross-Validation (ENR-TSCV)
	Specification 8—Time-Series Cross-Validation with Market Index and All Peer (ENR-TSCV-U)
	Specification 9—Lasso Regularization with Unconstrained Peer Firm Returns (LASSO)
	Specification 10—Synthetic Control (SYNTH)
	Specification 11—Imbens-Doudchenko (ID)


	Simulation Results
	Comparison Approach 1: Abnormal Return Variance Normalized Against the Simple Market Model's Average Event-Date Variance
	Comparison Approach 2: Abnormal Return Variance Normalized Against Within-Date In-Sample Variance of the MM Specification
	Comparison Approach 3: Significance test performance using the standard parametric testing approach
	Comparison Approach 4: Significance Test Performance Using the Sample Quantile Test

	Further Results
	The Bias-Variance Tradeoff
	Results During The Financial Crisis Period
	Application to Cross-Sectional Event Studies

	Conclusion

