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a b s t r a c t 

We explain when and how staggered difference-in-differences regression estimators, com- 

monly applied to assess the impact of policy changes, are biased. These biases are likely 

to be relevant for a large portion of research settings in finance, accounting, and law that 

rely on staggered treatment timing, and can result in Type-I and Type-II errors. We sum- 

marize three alternative estimators developed in the econometrics and applied literature 

for addressing these biases, including their differences and tradeoffs. We apply these es- 

timators to re-examine prior published results and show, in many cases, the alternative 

causal estimates or inferences differ substantially from prior papers. 
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1. Introduction 

The estimation of policy effects—either the average

effect or the average effect on the treated—is at the
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core of empirical finance, accounting, and legal studies. 

“Difference-in-differences” (DiD) is a workhorse estima- 

tion approach for making causal inference in these fields 

and a centerpiece of the “credibility revolution” over 

the prior thirty years. It typically leverages the passage 

of laws or market rules (treatment), impacting one set 

of firms or market participants (treated) but not others 

(controls), and compares the differences in the outcomes 

between treated and controls over time to infer causal 

effects. 

A generalized version of this estimation approach that 

relies on the staggered adoption of laws or regulations 

(e.g., across states or countries) has become especially 

popular over the last two decades. Table 1 shows that, 

from 20 0 0 to 2019, there were 744 papers published in 

top-five finance (431 papers) or accounting (313 papers) 

journals that use DiD designs. Among them, 407 (55% 
ss article under the CC BY license 
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Table 1 

Use of DiD and Staggered DiD in Finance and Accounting: 20 0 0–2019. 

(1) (2) (3) 

DiD Staggered DiD Staggered / All (%) 

Journal of Finance 52 30 57.6% 

Journal of Financial Economics 163 85 52.1% 

Review of Financial Studies 138 75 54.3% 

Review of Finance 27 14 51.8% 

Journal of Financial and Quantitative Analysis 51 32 62.7% 

Finance 431 236 54.7% 

Journal of Accounting Research 52 24 46.1% 

Journal of Accounting and Economics 63 38 60.3% 

The Accounting Review 110 63 57.2% 

Review of Accounting Studies 47 28 59.5% 

Contemporary Accounting Research 41 18 43.9% 

Accounting 313 171 54.6% 

Finance and Accounting 744 407 54.7% 

Note: Table 1 summarizes the number of papers published in five finance ( Journal of Finance, Journal of Financial Economics, Review of Financial Studies, 

Review of Finance , and Journal of Financial and Quantitative Analysis ) and five accounting ( Journal of Accounting Research, Journal of Accounting and Economics, 

The Accounting Review, Review of Accounting Studies , and Contemporary Accounting Research ) journals in the two decades between 20 0 0 and 2019 that uses 

DiD or staggered DiD designs in its main analyses. We included those papers that, as of the end of 2019, were accepted for publication in one of these 

journals. Using Google Scholar’s advanced keyword search, we identified the pool of potential papers as those published (or accepted for publication) 

in the ten journals during the 20 0 0–2019 period in which the term “difference-in-differences” appears anywhere in the article. (We also considered 

variants without hyphens, which yields identical results. However, searching for abbreviations such as “DID” returned almost every published paper.) 

We read through each paper to verify which ones employed DiD or staggered DiD designs in their main analyses. This table summarizes the results of our 

manually collected data. Columns 1 and 2 report the total number of DiD and staggered DiD papers, respectively, published in each journal and for finance, 

accounting, and all ten journals during the 20 0 0–2019 period. Column 3 reports the percentage of DiD papers that employ staggered DiD designs in each 

category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

overall and in each of the two fields) use a staggered DiD

design, with 394 of the 407 (97%) published since 2010. 

The prevalent use of staggered DiD reflects a common

belief among researchers that such designs are more ro-

bust, and mitigate concerns that contemporaneous trends

could confound the treatment effect of interest. However,

recent advances in econometric theory (e.g., Borusyak and

Jaravel, 2018; Athey and Imbens, 2018; Strezhnev, 2018;

de Chaisemartin and D’Haultføeuille, 2020; Borusyak et al.,

2021; Callaway and Sant’Anna, 2021; Goodman-Bacon,

2021; Imai and Kim, 2021; Jakiela, 2021; Sun and Abraham,

2021 ) suggest that standard DiD regression estimates with

staggered treatment timing often do not provide valid es-

timates of the causal estimands of interest to researchers—

such as the average treatment effect on the treated

(ATT)—even under random assignment of treatment. 

This paper explains the intuition behind these theoreti-

cal problems, when and how they arise, and how they can

lead to incorrect inferences. This paper also summarizes

three solutions suggested by the econometrics or applied

literature that empirical researchers in finance can apply

for circumventing the problems. Importantly, we show that

these theoretical problems are likely to matter in actual

data and settings that researchers in finance, accounting,

and law analyze. 

We begin by providing an overview of the recent work

in econometrics that explains why static treatment effect

estimates from staggered DiD designs are not easily inter-

pretable estimates for the ATT ( Goodman-Bacon, 2021 ). In

general, these estimates, obtained through two-way fixed

effects (TWFE) DiD regressions, are variance-weighted

averages of many different “2 × 2 ” DiDs, each involving

the comparison between a treated and an effective control

group in a window before and after the treated group

receives treatment. In some of the 2 × 2 s, already-treated
371 
units can act as effective com parison units, whose outcome 

changes may reflect treatment effects that are subtracted 

from the changes of later-treated units. Put differently, 

these regressions introduce a “bad comparisons” problem 

that differs from a violation of the parallel-trends assump- 

tion but is similarly problematic. When treatment effects 

can change over time (“dynamic treatment effects”), stag- 

gered DiD treatment effect estimates can actually obtain 

the opposite sign of the true ATT, even if the researcher were 

able to randomize treatment assignment (thus where the 

parallel-trends assumption holds). These theoretical results 

have far-reaching implications for applied researchers. 

To demonstrate the situations under which these 

problems can arise, we simulate synthetic datasets from 

Compustat to mimic a standard staggered DiD design in 

applied corporate finance research: here exploiting stag- 

gered changes in state-level laws using a panel of firms 

whose returns on assets (ROAs) are measured over many 

years (e.g., Karpoff and Wittry, 2018 ). Our simulations 

produce three main insights. First, DiD estimates are 

unbiased in settings with a single treatment period, even 

when there are dynamic treatment effects. Second, DiD 

estimates are also unbiased in settings with staggered tim- 

ing of treatment assignment and homogeneous treatment 

effect across firms and over time. Finally, when research 

settings combine staggered timing of treatment effects 

and treatment effect heterogeneity, staggered DiD esti- 

mates are likely biased. In particular, the combination of 

staggered treatment timing and dynamic treatment effects 

accentuates the presence and role of the “bad compar- 

isons” problem in TWFE DiD static effect estimates, which 

can result in significant estimates with the wrong sign. 

Moreover, the biases that arise with static staggered DiD 

estimates are not resolved by implementing event-study 

estimators. Researchers commonly estimate generalized 
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TWFE DiD regressions that allow for dynamic treatment

effects. However, recent work suggests that dynamic ef-

fect estimates from such event-study estimators are also

problematic. Sun and Abraham (2021) shows that, in the

presence of staggered treatment timing and treatment ef-

fect heterogeneity, TWFE dynamic effect estimates for one

relative-time period is contaminated by the causal effects

of other relative-time periods in the estimation sample. 

These biases are likely to apply in a large portion of

research settings involving staggered treatment assign-

ments and TWFE DiD regressions, because we believe

that dynamic treatment effects are the most reasonable

default assumption in many economic settings. We also

demonstrate why these biases can result in both Type-I

and Type-II errors. That is, researchers may conclude that

treatment effects exist and that pre-treatment trends in

treatment-control outcome differences are not present

(consistent with the parallel-trends assumption) when

the opposite is true. Researchers may also conclude that

treatment effects do not exist, or pre-treatment trends

are present, when the opposite is true. Remedying these

biases is therefore critical for applied research. 

Next, we summarize three alternative estimators de-

veloped in the econometrics or applied literature that

researchers can apply in settings with staggered treatment

timing (e.g., Callaway and Sant’Anna, 2021; Sun and Abra-

ham, 2021; Gormley and Matsa, 2011 ). While the literature

has not settled on a standard, the proposed solutions all

deal with the biases arising from the “bad comparisons”

problem inherent in TWFE DiD regressions by modifying

the set of effective comparison units in the treatment

effect estimation process. For example, each alternative

estimator ensures that firms receiving treatment are not

compared to those that previously received it. However,

the methods differ in which observations are used as

effective com parison units and how covariates are incor-

porated. We show that these alternative estimators help

recover the actual treatment effects using our simulated

data. Moreover, we explain the tradeoffs that researchers

face when choosing among the three alternatives. 

Finally, we demonstrate how these problems affect

applied research by examining papers published in the top

finance journals over the last decade. We replicate and

extend the findings of two papers that apply staggered

DiD designs in different settings: from bank deregulation

( Beck et al., 2010 ) to global board governance reform

( Fauver et al., 2017 ). In each paper, we find that the

published staggered DiD estimates are susceptible to the

biases from treatment effect heterogeneity. For example,

treatment effect estimates from the alternative estimators

often do not support the papers’ original claims. In repli-

cating these papers, we also demonstrate the impact of

common specification choices in implementing staggered

TWFE DiD regressions. For example, we show how binning

relative-time periods in event-study specifications can

influence dynamic treatment effect estimates, consistent

with the analytical results of Sun and Abraham (2021) . 

Our paper contributes to the literature by highlighting

an important methodological problem that we argue

likely applies to a significant subset of applied research

in finance and accounting. Contemporaneous papers in
372 
these fields have also highlighted the biases with TWFE 

staggered DiD treatment effect estimates ( Barrios, 2021; 

Zdrojewski and Butler, 2021 ). We show how these issues 

raise concerns about spurious effects in empirical work 

and influence which types of papers empirical researchers 

pursue and journals publish. We suggest finance and 

accounting researchers should interpret standard TWFE 

staggered DiD regression estimates with caution, partic- 

ularly in cases where treatment effect heterogeneity is 

the most likely and where the research setting contains 

relatively few never-treated units. We also suggest oppor- 

tunities for re-examining critical prior research findings 

established based on staggered DiD designs or previously 

rejected research ideas (e.g., due to an absence of esti- 

mated treatment effects) relying on such designs. Finally, 

we offer empirical researchers guidelines for conducting 

DiD studies in settings with staggered treatment timing 

and suggestions for mitigating potential pitfalls. 

2. A review of the DiD method 

2.1. Basic 2 × 2 design and validity of DiD as causal estimate 

The DiD design is one of the most commonly used 

methods for identifying causal effects in applied eco- 

nomics research. In its simplest form, DiD design involves 

a single treatment, two discrete periods (pre- and post- 

treatment), and two groups: units that receive (“treated”) 

and do not receive (“control”) treatment. In this “2 × 2 ”

design, the treatment effect on the outcome of interest 

can be estimated empirically by comparing the change in 

the average outcome in the treated units to the change in 

the average outcome in the control units. 

The potential outcomes framework (e.g., Rubin, 2005 ) 

formalizes why and when this empirical estimate is valid. 

Denote Y i,t (1) as the value of the outcome of interest for 

unit i at time t if the unit receives treatment, and Y i,t (0) 

as the outcome for unit i at time t if it does not receive 

treatment. The average treatment effect on the treated 

(ATT) is typically the causal estimand—the quantities to 

be estimated—of interest to researchers. It is defined as 

the difference Y i,t (1) − Y i,t (0) averaged across the units 

receiving treatment. 

The challenge in identifying the ATT stems from a 

fundamental missing data problem: for any given unit, we 

only observe one (not both) of the potential outcomes. 

DiD designs resolve this challenge by implicitly imputing 

the counterfactual outcomes of treatment units using out- 

comes for the control units. The validity of this approach 

rests on the central assumption that the observed trend 

in control units’ outcomes mimic the trend in treatment 

units’ outcomes had they not received treatment (i.e., 

the “parallel-trends” assumption). Letting ATT = δ and 

denoting D as an indicator variable evaluating to 1 when 

unit i is treated and 0 otherwise, we have 

δ ≡ E [ Y i, 1 (1) − Y i, 1 (0) | D i = 1] 

= E [(Y i, 1 (1) − Y i, 0 (1)) | D i = 1] − E [(Y i, 1 (0) − Y i, 0 (0)) | D i = 1] 

= E [ ( Y i, 1 (1) − Y i, 0 (1) ) | D i = 1 ] − E [ ( Y i, 1 (0) − Y i, 0 (0) | D i = 0 ) ] . 

The first equality defines the estimand of interest but can- 

not be directly estimated in the data. The second equality 
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follows from adding and subtracting Y i, 0 (0) and assuming

no anticipation of treatment, so that Y i, 0 (0) = Y i, 0 (1) . The

second equality, particularly the second term, also cannot

be directly estimated in the data because Y i, 1 (0) − Y i, 0 (0)

is unobservable for a unit that receives treatment. The

last equality follows from the parallel-trends assumption—

E [(Y i, 1 (0) − Y i, 0 (0)) | D i = 1] = E 

[(
Y i, 1 (0) − Y i, 0 (0) | D i = 0 

)]
—

and can be estimated in the data. 1 To the extent control

units’ outcome trends do not capture the counterfactual

outcome trends for treatment firms, the DiD estimate will

be biased. 

2.2. Use of regressions in implementing DiD 

Researchers commonly obtain DiD estimates through

ordinary linear regression (OLS). For example, the ATT

from the simple 2 × 2 case can be obtained as the slope

coefficient on the interaction term ( β3 ) from the following

regression: 

y it = α + β1 D i + β2 P OST t + β3 ( D i × P OST t ︸ ︷︷ ︸ 
D it 

) + εit , (1)

where D i is an indicator variable for the treated unit, P OST t 
is an indicator variable for observations in periods t = 1 ,

and D it denotes the interaction term. 

An advantage of regression-based DiD is that it pro-

vides both the point estimate for δ and its standard errors.

Another perceived advantage of the regression framework

is that it can accommodate more generalized DiD settings

because it is “easy to add additional states or periods to

the regression setup ... [and] it’s easy to add additional

covariates” ( Angrist and Pischke, 2009 ). 

In settings with more than two units and two time pe-

riods, the regression DiD model usually takes the following

two-way fixed effect (TWFE) form: 

y it = αi + λt + δDD D it + εit , (2)

where αi and λt are unit and time period fixed effects,

which subsume the main effects for D i and P OST t . Re-

searchers commonly modify this TWFE model to include

covariates, time trends, and dynamic treatment effect

estimation (e.g., by separately including indicators for

the number of periods before or after the treatment). 2
1 We note that two additional assumptions underlie the above justi- 

fication of DiD as a valid estimate for ATT: the first is the assumption 

that all the expectations exist and are finite, and the second is the sta- 

ble unit treatment value assumption (SUTVA). SUTVA, also known as the 

non-interference assumption, says that potential outcomes for a unit de- 

pends only on its treatment assignment (i.e., not the treatment assign- 

ment of another unit). It implies that only one of the potential outcomes 

is observed for every member of the population and there are no relevant 

interactions between members of the population: that is, the observed 

outcomes are fully specified y i,t = Y i,t (1) D i + Y i,t (0)(1 − D i ) . If SUTVA is 

violated, then we may observe neither of the potential outcomes, invali- 

dating the DID estimate. 
2 Recent literature examines the assumptions under which the inclu- 

sion of time-varying covariates in TWFE DiD regressions lead to consis- 

tent estimates for the ATT. Sant’Anna and Zhao (2020) explains that, even 

when there is only one treatment period, TWFE DiD regression models 

with time-varying covariates produce consistent estimates for the ATT 

only under several (and plausibly more stringent) assumptions in ad- 

dition to the traditional “parallel-trends” and “no-anticipation” assump- 

373 
Notably, researchers apply the TWFE model to estimate δ
in settings with staggered treatment timing. The perceived 

flexibility of regression DiD models likely contributed to 

their increasing popularity in applied research over the 

past two decades. 

3. TWFE under staggered treatment timing: The 

problems 

In a DiD with a single treatment period, a typical 

concern is that contemporaneous trends driven by fac- 

tors other than the treatment of interest could confound 

the treatment effect—a violation of the parallel-trends 

assumption. Staggered DiD designs have been generally 

viewed as more credible and robust based on the intuition 

that including multiple treatments plausibly alleviates 

concerns that contemporaneous trends drive the observed 

treatment effects. 

However, recent work in econometric theory casts 

doubt on the validity of the TWFE DiD estimator when it 

is applied to settings with variations in treatment timing. 

Significant biases may arise when such staggered DiD esti- 

mators are used for producing static or dynamic treatment 

effect estimates. This section summarizes the main issues 

and provides an intuition for when and why biases arise. 

We then demonstrate these problems by simulating data 

commonly encountered by finance researchers. 

3.1. Static staggered DiD estimates 

Goodman-Bacon (2021) shows that the “static” stag- 

gered DiD TWFE treatment effect estimate ( δDD of Eq. (2) ) 

is a “weighted average of all possible two-group/two- 

period DiD estimators in the data.” For example, the 

TWFE estimate constitutes four possible 2 × 2 s when 

there are three groups over the sample period (from the 

earlierst period—t 0 —to the last period in the data—T ): a 

never-treated group (denoted U), an earlier-treated group 

(denoted k ) that is treated at time t ∗
k 

, and a later-treated 

group (denoted l) that is treated at t ∗
l 

. 3 

The first two of the possible 2 × 2 DiD comparisons in- 

volve one treatment group (either the earlier- or the later- 

treated firms) and the untreated group (as control) over 

the whole sample window (from t 0 to T ). The other two 

possible 2 × 2 s involve comparisons between the different 

treatment groups. One of these “timing-only” 2 × 2 s com- 

pares the earlier-treated firms to the later-treated firms 

(serving as controls) over the window from t 0 to t ∗ (i.e., in 
l 

tions. The requisite additional assumptions include treatment effect ho- 

mogeneity (i.e., the ATT does not depend on the values of the covariates) 

and parallel trends in each of the included covariates between the treat- 

ment and control groups. For tractability, our paper generally abstracts 

away from the estimation issues arising from the inclusion of covariates. 

Nevertheless, this work motivates our replication analysis approach and 

our recommendation that researchers should produce a variant of TWFE 

estimates without time-varying covariates as a benchmark. 
3 The decomposition of Goodman-Bacon (2021) assumes a setting in 

which treatments are irreversible. Other papers, such as de Chaise- 

martin and D’Haultføeuille (2020) , provide alternative decompositions un- 

der general conditions (e.g., when treatment can turn on and off). 
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V

which the earlier-treated units receive treatment the later-

treated firms have not yet received treatment). The other

“timing-only” 2 × 2 compares the later-treated firms to the

earlier-treated firms over the window from t ∗
k 

to T (i.e.,

the later-treated units receive treatment the earlier-treated

firms have already received treatment). In this latter com-

parison, the earlier-treated units are used as controls

against which the later-treated outcomes are compared. 

We highlight three main results from this decom-

position. First, the TWFE estimate of δDD is a variance-

weighted average of the constituent 2 × 2 DiD estimates,

with each 2 × 2 receiving positive weight. Second, in a

significant subset of the constituent 2 × 2 DiD estimates,

treated units can serve the role of effective comparison

units, which may be problematic. Of particular concern

are the “timing-only” 2 × 2 s in which earlier-treated units

act as effective controls (the “potentially problematic

2 × 2 s”) for later-treated units. Because changes in the

earlier-treated units’ outcomes may reflect changes in

their treatment effects over time, the resultant DiD esti-

mates could reflect differences in treatment effects over

time between different treatment cohorts. (In a research

design with G different treatment-timing groups and one

untreated group, G 

2 − G of the G 

2 total constituent 2 × 2

DiD estimates involve timing-only 2 × 2 s, thus (1-1/G)/2

of the constituent DiDs are potentially problematic.) Third,

the weight on each 2 × 2 estimate used to construct ̂ δDD is

greater when, all else equal, the size of the subsample is

larger, the treatment and effective comparison groups are

similar in size, or the treatment variance is higher. 

These results have important implications for the ro-

bustness of TWFE DiD estimates with staggered treatment

timing. First, they may differ from the sample-average ATT

because OLS applies variance weighting and implicitly ap-

plies positive weight to the potentially problematic 2 × 2 s.

The latter also implies that the TWFE estimate need not

have the same sign as the average ATT. For example, even

if the ATTs for all treatment cohorts are positive, it is

possible to obtain a negative estimate ̂ δDD . Second, the

contribution of each constituent 2 × 2 DiD to the overall

TWFE staggered DiD estimate is sample-dependent. For

example, all else equal, constituent 2 × 2 DiD comparisons

in which the treatment groups receive treatment closer

to the middle of the comparison window receive greater

weight because the treatment variance is larger. Changing

the panel length alone can therefore change the weights

applied to the constituent 2 × 2 s and the TWFE staggered

DiD estimate, even when each 2 × 2 DiD estimate is held

constant. Finally, the issues posed by “potentially prob-

lematic 2 × 2 s” are mitigated to the extent that units that

never receive treatment account for a more significant

portion of the sample. 

Goodman-Bacon (2021) also examines what causal

estimand the TWFE DiD identifies and under which con-

ditions. Like Callaway and Sant’Anna (2021) , this paper

defines the ATT for a treatment-timing group g at a point

in time as the “group-time average treatment effect”: 

AT T (g, τ ) ≡ E [ Y i,τ (1) − Y i,τ (0) | E i = g] , (3)

where E i denotes the time when unit i receives treatment

and E = g for all firms that receive treatment at time
i 

374 
period g. AT T (g, τ ) is simply the expected difference 

between the observed outcome variable for treated firms 

at time τ and the outcome had the firms not received 

treatment. This formulation allows for heterogeneity in 

ATT across treatment cohorts ( g) or over time ( τ ). 

Notably, Goodman-Bacon (2021) shows the probabil- 

ity limit of the TWFE DiD estimator consists of three 

components: 

plim 

N→∞ 

̂ δDD = V WAT T + V W CT − �AT T . (4) 

 WAT T is the “variance-weighted average treatment effect 

on the treated,” a positively weighted average of the 

AT T (g, τ ) ’s for the treatment groups and post-periods 

across all 2 × 2 s that constitute ̂ δDD . Absent any biases, ̂ δDD is consistent for this causal estimand. V W CT is the 

“variance-weighted common trend,” which extends the 

parallel-trends assumption for a 2 × 2 DiD to a setting 

with treatment timing variation. VWCT is the weighted av- 

erage of the difference in counterfactual trends (i.e., absent 

treatment) in the outcome between all pairs of groups 

and in the windows across all 2 × 2 s that constitute ̂ δDD . 

This term captures the possibility that different groups 

might not have the same underlying trend in the outcome 

without treatment, which will inherently bias any DiD es- 

timate. On the other hand, V W CT = 0 if the parallel-trends 

assumption holds in each constituent 2 × 2 comparison. 

Finally, the last term of Eq. (4) ( �AT T ) is a weighted 

sum of the change in AT T (g, τ ) within a treatment-timing 

group’s post-period and around a later-treated unit’s treat- 

ment window. This term arises because static TWFE DiD 

estimates implicitly use already-treated groups as effective 

comparison units for later-treated groups. It quantifies 

the extent to which, in such situations, the changes in 

earlier-treated units’ outcome values are contaminated 

by changes in treatment effects over time (e.g., if the full 

treatment effect takes more than one period to be incorpo- 

rated). To the extent this occurs, these outcome trends are 

inappropriate counterfactuals for the later-treated units. 

Equation (4) suggests the staggered DiD TWFE estimate 

can differ from the sample-average ATT due to treatment 

effect heterogeneity either over time or across groups, 

even when the parallel-trends assumption is satisfied 

( V W CT = 0 ). When treatment effects are static (where 

the outcome is shifted by a constant after treatment) but 

vary across units, �AT T = 0 and plim 

N→∞ ̂

 δDD = V WAT T . In 

this case, V WAT T may differ from the sample-average 

ATT when there is treatment effect heterogeneity because 

OLS applies weights on each cohort’s AT T estimate that 

generally differ from the sample shares. As explained in 

Goodman-Bacon (2021) , because TWFE uses OLS to com- 

bine the constituent 2 × 2 DiDs efficiently, the VWATT lies 

along the bias-variance tradeoff, and the weights deliver 

efficiency by potentially moving the point estimate away 

from the sample-average ATT. However, because there is 

no theoretically “correct” weighting, whether the TWFE 

estimate is desirable ultimately rests on the setting, the 

research question of interest, or the researcher’s objectives. 

Second, and more importantly, the staggered DiD TWFE 

estimate will differ from the sample-average ATT when 

the treatment effect is “dynamic.” That is, instead of a 
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constant additive effect, the treatment effect is a function

of time elapsed since treatment. Equation (4) suggests that

time-varying treatment effects can create a bias in the

static TWFE DiD estimate because �AT T � = 0 . As empha-

sized earlier, this bias has arbitrary sign and magnitude,

and the resultant treatment effect can be either too large,

too small, or even have the wrong sign. 

3.1.1. Simulations using compustat data 

Having summarized the theoretical problems with

TWFE DiD estimates in settings with staggered treatment

timing, we now turn to analyze how these issues may

arise in actual data that finance and accounting researchers

commonly encounter via a simulation analysis. Similar to

Bertrand et al. (2004) , we perform a Monte Carlo where

the data generating process stems from the empirical dis-

tribution of Compustat data, focusing on return on assets

( ROA ) as the outcome of interest. We introduce various

treatment effects to firms in treated states, then examine

the properties of the resultant TWFE DiD estimates. 

We begin with a sample of all firms in Compustat

over the 36-year period from 1980 to 2015 that are

U.S. incorporated, non-financial, and contain at least five

observations. Using this (unbalanced) panel of 176,670

observations, we compute ROA and decompose it into

year- and firm-fixed effects and residuals: 

{ ̂  αi } I i =1 , { ̂ λt } T t=1 , and { ̂  εt } N it=1 from ROA it = αi + λt + εit . 

For each year, firm, and observation in the sample, we

draw year-fixed effects, firm-fixed effects, and ROA resid-

uals, respectively, from the empirical distribution. Similar

to Bertrand et al. (2004) , we also randomly draw states of

incorporation for each firm, putting a 1/50 probability on

each state. 4 Finally, we randomly assign states into treat-

ment and control groups (in Simulation 1 and 2 below)

or into different treatment-timing groups (in Simulations

3–6) with equal probability. 

Next, we introduce six different treatment effects to

the data generating process for ROA . The first three are

either constant over time or based on a single treatment

period: 

˜ ROA 

1 

it = 0 . 5 σROA × I [ T reat i ] × I [ t ≥ 1998] + ̃

 αi + ̃

 λt + ̃

 εit , 

(5)

˜ ROA 

2 

it = 0 . 05 σROA × I [ T reat i ] × I [ t ≥ 1998] × (t − 1997) 

+ ̃

 αi + ̃

 λt + ̃

 εit , (6)

and ˜ ROA 

3 

it = 0 . 5 σROA × (G 1989 × I [ t ≥ 1989] + G 1998 

× I [ t ≥ 1998] + G 2007 × I [ t ≥ 2007]) 

+ ̃

 αi + ̃

 λt + ̃

 εit , (7)
4 We also conducted a variant of the simulation which states of in- 

corporation is drawn from the empirical distribution. All of the conclu- 

sions from the simulation analysis are qualitatively unchanged. However, 

the simulated distributions of TWFE DiD estimates are more complex 

(i.e., multi-modal) due to 56% of the observations being incorporated in 

Delaware. Our simulations assign firms to states of incorporation with 

equal probability for parsimony. 

375 
where ˜ αi , 
˜ λt , and 

˜ εit refer to the simulated fixed effects 

and residuals, σROA refers to the sample standard deviation 

of ROA (30.9%), G t denotes an indicator for units assigned 

treatment at time t , and 

˜ ROA denotes the simulated ROA . 

The first simulation assumes a single treatment period, 

in which a random half of the states initiate treatment 

at t = 1998 , and a static treatment effect of half of σROA . 

The second simulation also assumes a single treatment 

period. However, it differs from the first simulation in 

that the treatment effect is assumed to be dynamic over 

time, increasing by 5% of σROA each year. Instead of a 

level shift in the outcome (i.e., Simulation 1), Simulation 

2 introduces a trend-break in ROA . The third simulation 

allows for staggered timing of treatment assignment with 

static treatment effects. States are randomly assigned to 

one of three treatment groups based on the year in which 

the treatment initiates—1989 ( G 1989 = 1 ), 1998 ( G 1998 = 1 ), 

or 2007 ( G 2007 = 1 )—and there are no never-treated units. 

Our analysis of TWFE DiD estimates is based on 500 

simulated Compustat samples of ROA s under each data 

generating process. Figure 1 i depicts the differences in the 

data generating processes in Simulations 1–3 by plotting 

the outcome paths (gray lines) and the mean values of 

the outcome by treatment cohort (the colored lines). 

For each of the 500 simulated Compustat samples from 

each data generating process, we estimate a TWFE DiD 

regression ( Eq. (2) ) and plot the distribution of treatment 

effect estimates in Fig. 1 ii. In all three simulations, the 

TWFE DiD estimate is unbiased for the sample-average 

ATT (vertical dashed line). These simulations suggest that 

TWFE DiD estimates are valid in settings with a single 

treatment period (even with dynamic treatment effects) 

or with no treatment effect heterogeneity across firms and 

over time (even with variation in treatment timing). 

We note that, in an unbalanced sample, there are sev- 

eral ways to define the “sample-average” ATT. We compute 

a “firm-average” ATT, which first computes each treatment 

firm’s (equal-weighted) average post-period ATT and then 

computes an (equal-weighted) average ATT across treat- 

ment firms. We also compute an “observation-average”

ATT, which computes the (equal-weighted) average ATT 

across all the post-period treatment observations. This 

computation effectively places greater weight on those 

treatment firms with more post-period observations. Nei- 

ther is conceptually more “correct,” and they are identical 

under a balanced panel or static treatment effects. Sim- 

ulation 2 shows that, under dynamic treatment effects 

and uniform treatment timing, TWFE DiD estimates are 

unbiased for the firm-average ATT. 

Next, we illustrate the conditions under which TWFE 

DiD estimates are biased. We conduct three additional 

simulations (Simulation 4, 5, and 6), each of which follows 

the staggered treatment timing design of Simulation 3. 

However, unlike Simulation 3, Simulations 4–6 allow for 

different forms of treatment effect heterogeneity: 

˜ ROA 

4 

it = (0 . 5 σROA × G 1989 × I [ t ≥ 1989] 

+ 0 . 3 σROA × G 1998 × I [ t ≥ 1998] 

+ 0 . 1 σROA × G 2007 × I [ t ≥ 2007]) 

+ 

˜ αi + ̃

 λt + ̃

 εit , (8) 
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Fig. 1. Simulation: TWFE DiD Estimates Under Uniform Treatment Timing or Treatment Effect Homogeneneity. 

Figure 1 , panel (i), plots the firm-level outcome path (the gray lines) and the average outcome path by treatment groups (the bold lines) in one of the 

simulated Compustat datasets for Simulations 1, 2, and 3. To construct a simulated panel dataset, for each year, firm, and observation in the sample, we 

draw year-fixed effects, firm-fixed effects, and ROA residuals, respectively, from the empirical distribution. We then randomly draw states of incorporation 

for each firm and randomly assign states into treatment (T) and control groups (C) (i.e., in Simulations 1 and 2) or different treatment timing groups (i.e., 

in Simulation 3). Finally, we introduce treatment effects to the firms incorporated in treated states. Simulation 1 introduces a single treatment with a static 

effect ( Eq. (5) ). Simulation 2 introduces a single treatment with a dynamic effect ( Eq. (6) ). Simulation 3 introduces three treatments—to firms assigned to 

the 1989, 1998, or 2007 treatment-timing groups—each with static effects of the same magnitude ( Eq. (7) ). Panel (ii) plots the distribution of the static 

TWFE DiD treatment effect estimate ( ̂  δDD from Eq. (2) ) from 500 Monte Carlo simulations of our three different data generating processes. The curve 

represents the distribution of the TWFE estimates, while the dashed vertical lines represent the observation-level or firm-level average ATT. 

 

 

 

 

 

 

˜ ROA 

5 

it = (0 . 03 σROA × G 1989 × I [ t ≥ 1989] 

+ 0 . 03 σROA × G 1998 × I [ t ≥ 1998] 

+ 0 . 03 σROA × G 2007 × I [ t ≥ 2007]) 

× [ t − 1988 G 1989 − 1997 G 1998 − 2006 G 2007 ] 

+ 

˜ αi + ̃

 λt + ̃

 εit . (9)

˜ ROA 

6 

it = (0 . 05 σROA × G 1989 × I [ t ≥ 1989] 

+ 0 . 03 σROA × G 1998 × I [ t ≥ 1998] 

+ 0 . 01 σROA × G 2007 × I [ t ≥ 2007]) 

× [ t − 1988 G 1989 − 1997 G 1998 − 2006 G 2007 ] 

+ 

˜ αi + ̃

 λt + ̃

 εit . (10)

Simulation 4 considers static ATTs, like Simulation 3, but

allows them to differ across treatment-timing groups.

Simulation 5 considers dynamic treatment effects, like

Simulation 2, and assumes that the dynamic effects are
376 
the same across treatment-timing groups. Simulation 

6 considers dynamic treatment effects and allows the 

trend-breaks to differ across treatment-timing groups. 

Figure 2 i shows the simulated outcome paths for 

Simulation 4–6. As before, for each of the 500 simulated 

Compustat samples from each data generating process, we 

estimate a TWFE DiD regression and plot the distribution 

of treatment effect estimates in Fig. 2 ii. In Simulation 4, 

5, and 6, TWFE estimates can differ substantially from the 

sample-average ATT (i.e., they are not centered around 

either of the vertical dashed lines). Note that Simulation 

4 reflects the variance weighting that OLS applies to the 

constituent 2 × 2 ATTs, which generally differs from the 

weighting for a firm-level or observation-level average. 

Because there is no correct way to weight ATTs across 

cohorts, Simulation 4 does not suggest that the TWFE 

estimate is necessarily “wrong.” Rather, it reflects a dif- 

ferent way of aggregating the overall treatment effect. In 

our view, when researchers have different ATT estimates 



A.C. Baker, D.F. Larcker and C.C.Y. Wang Journal of Financial Economics 144 (2022) 370–395 

Fig. 2. Simulation: TWFE DiD Estimates Under Uniform Treatment Timing or Treatment Effect Homogeneneity. 

Figure 2 , panel (i), plots the firm-level outcome path (the gray lines) and the average outcome path by treatment groups (the bold lines) in one of the 

simulated Compustat datasets for Simulations 4, 5, and 6. To construct a simulated panel dataset, for each year, firm, and observation in the sample, we 

draw year-fixed effects, firm-fixed effects, and ROA residuals, respectively, from the empirical distribution. We then randomly draw states of incorporation 

for each firm and randomly assign states into different treatment timing groups: 1989, 1998, or 2007. Finally, we introduce treatment effects to the firms 

incorporated in treated states. Simulation 4 introduces static treatment effects, where the effect magnitudes differ across treatment-timing groups ( Eq. (8) ). 

Simulation 5 introduces dynamic treatment effects, where the dynamics are the same across treatment-timing groups ( Eq. (9) ). Simulation 6 introduces 

dynamic treatment effects, where the dynamics differ across treatment-timing groups ( Eq. (10) ). Panel (ii) plots the distribution of the static TWFE DiD 

treatment effect estimate ( ̂  δDD from Eq. (2) ) from 500 Monte Carlo simulations of the three different data generating processes. The curve represents the 

distribution of the TWFE estimates, while the dashed vertical lines represent the observation-level or firm-level average ATT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

across cohorts, the ideal weighting across them may

depend on the setting, the research questions of interest,

or the researcher’s objectives. 

In contrast, Simulations 5 and 6 generate biased es-

timates for the sample-average ATT due to past treated

units serving as effective com parison units under dynamic

treatment effects ( �AT T > 0 ). Put differently, these two

scenarios differ from Simulation 4 in the sense that, by

applying positive weight to the potentially problematic

2 × 2 s, TWFE DiD estimates are clearly wrong. 

These simulations show that the combination of stag-

gered treatment timing and treatment effect heterogeneity,

either across groups or over time, leads to biased TWFE

DiD estimates for the sample-average ATT. This bias can be

so severe as to change the researcher’s inferences about

the direction of the treatment effect. For example, al-

though Simulations 5 leads to biased TWFE DiD estimates

of the average ATT, it preserves the correct treatment

effect sign on average. In contrast, Simulation 6 leads to
377 
an average estimated treatment effect that is negative and 

statistically significant, even though the ATT for every 

treated group is positive. 

3.1.2. Intuition via Goodman-Bacon (2021) Diagnostic 

To further understand these biases, such as why Sim- 

ulation 6 produces treatment effects of the wrong sign, 

we apply a diagnostic test to analyze TWFE estimates’ 

robustness. Specifically, Goodman-Bacon (2021) applies 

(in Fig. 6 of the paper) its decomposition to analyze the 

contribution of the constituent 2 × 2 ’s by plotting the con- 

stituent DiD estimates against their implicit weights in the 

TWFE estimate. Similarly, researchers can analyze the total 

weights and the weighted-average DiD estimate for each 

type of constituent 2 × 2 s: those involving comparisons of 

treatment-timing groups vs. never treated groups, those 

involving comparisons of earlier- vs. later-treated groups 

(as effective controls), and those involving later- vs. earlier- 
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Fig. 3. Simulation: Diagnostics. 

Figure 3 , upper panel, plots the implicit weight given to each constituent 2 × 2 in the static TWFE DiD estimate and the effect estimate for that 2 × 2 in 

one of the simulated Compustat datasets for Simulation 4, 5, and 6. The solid red circles represent the empirical estimates and TWFE weights for 2 × 2 s 

using later-treated firms as effective com parisons. The blue triangles represent the empirical estimates and TWFE weights for 2 × 2 s using prior-treated 

firms as effective comparisons. The hollow circle or triangle represents the firm-average ATT for the treated firms in the corresponding 2 × 2 s. The bottom 

panel depicts one constituent (“potentially problematic”) 2 × 2 comparison—a comparison of firms treated in 2007 to firms treated in 1989 in Simulation 

6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

treated groups (as effective controls). 5 Of particular con-

cern are situations where later- vs. earlier-treated 2 × 2 s

have DiD estimates of a different sign or when they carry

substantial total weight in the static TWFE DiD estimate. 

The top panel of Fig. 3 illustrates the diagnostic test for

Simulations 4, 5, and 6. Because the diagnostic test only

applies to balanced panels, in constructing this figure our

simulation is modified to artificially induce a balanced

panel of firm-year observations from Compustat before

drawing fixed effects and residuals from the empirical

distribution. 

For each of the six constituent 2 × 2 comparisons, we

plot the 2 × 2 DiD estimate and its overall weight on 

̂ δDD .

(For the specific formula for computing these weights,

see Eqs. (10e) , (10f), and (10g) of Goodman-Bacon (2021) .)

We distinguish the three types of 2 × 2 comparisons by

the marker symbol. Circle markers represent the con-

stituent groups where earlier-treated firms are compared
5 A Stata package (bacondecomp) written by the Andrew Goodman- 

Bacon, Thomas Goldring, and Austin Nichols performs the diagnostics dis- 

cussed in this subsection. An R package (bacondecomp) written by Evan 

Flack is also available. 

378 
(as treatment) to the later-treated (as effective controls), 

and triangle markers represent the constituent groups 

where later-treated firms are compared to the earlier- 

treated (as effective controls). We also compare each of 

these constituent DiD estimates to the firm-level average 

ATT for the treated firms in each 2 × 2 , represented by 

empty symbol markers and connected to the relevant 

constituent 2 × 2 DiD estimate by an arrow. Because the 

firm-level average ATT is the same across the 2 × 2 s that 

share the same effective treatment group, we add small 

perturbations to avoid overlapping marker symbols in 

Fig. 3 to facilitate the graphical depiction. In addition, 

because we compute the firm-level average ATT in the 

sample, 2 × 2 s that share the same effective treatment 

group also share the same weights for the ATT. 

The figure shows that, with heterogeneous static treat- 

ment effects under staggered treatment timing (Simulation 

4), the constituent DiDs are unbiased for the ATT within 

each 2 × 2 . However, OLS applies different weights, result- 

ing in an overall weighted average treatment effect that 

differs from the firm-average ATT. With dynamic treat- 

ment effects and staggered treatment timing (Simulations 

5 and 6), all the later- vs. earlier-treated comparisons 
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yield negative estimated treatment effects (i.e., all the blue

triangular points lie below zero) that are biased for the

ATTs. In contrast, all the earlier- vs. later-treated 2 × 2 s

yield positive DiD estimates that are unbiased for the

ATTs. 

The bottom panel of Fig. 3 provides graphical intuition

for why constituent 2 × 2 s can produce negative effects

despite all ATTs being positive. In particular, we examine

a particular 2 × 2 in Simulation 6 that compares firms

treated in 2007 (as treated) to firms treated in 1989

(as controls) in the 1989 to 2015 subsample. This 2 × 2

illustrates the idea of the �AT T bias: it yields a negative

DiD because the large changes in the outcome for earlier-

treated firms, the effective controls, are subtracted from the

relatively smaller changes in the outcome for later-treated

firms, the effective treatment firms in this subsample.

Clearly, this comparison is invalid because the control

firms’ outcome changes are contaminated by changes in

treatment effects over time. This example also highlights

a critical insight of the Goodman-Bacon (2021) decompo-

sition: under dynamic treatment effects, biases from bad

controls can arise even when the parallel-trends assump-

tion holds, as is the case here (i.e., the 2007 and 1989

cohorts have the same expected counterfactual outcomes

had they not received treatment). 

Finally, the diagnostic test also shows that TWFE down-

weights some of the earlier- vs. later-treated comparisons

and up-weights some of the later- vs. earlier-treated com-

parisons, thereby increasing the influence of the potentially

problematic 2 × 2 s. Thus, a combination of negative effects

estimated from and the significant weights applied to po-

tentially problematic 2 × 2 s results in a TWFE DiD estimate

that can significantly deviate from the sample-average ATT.

We note that the decomposition and diagnostic offered

by Goodman-Bacon (2021) can at present only be used

with balanced panels and do not incorporate covariates.

These are atypical features of corporate finance or ac-

counting applications. Nevertheless, we recommend that

researchers should always analyze covariate-free variants

of DiD analyses as starting points. To the extent possi-

ble, we believe this diagnostic test should be applied to

analyze the potential biases in TWFE DiD estimators in

settings with staggered treatment timing. 

3.1.3. Type-I and Type-II errors 

Our simulation analyses suggest that the biases in

staggered TWFE DiD estimators may result in Type-II

errors. For example, in Simulation 5 of Fig. 2 i, the TWFE

DiD estimates a very small effect that is close to 0, even

though the true ATTs for each treatment cohort is positive

and large in magnitude. A researcher, expecting editors

and referees to be more likely to publish statistically

significant results ( Andrews and Kasy, 2019; Kim and Ji,

2015 ), may very well reject such “good” projects, where

economically and statistically significant effects exist, or

the findings could be important for informing policy. 

TWFE biases may also result in Type-I errors, where

true treatment effects are zero on average, but the es-

timated effects are not. This is because �AT T bias in

Eq. (4) can be non-zero even when V WAT T is zero. For ex-

ample, the treatment effect could be heterogeneous across
379 
cohorts but is on-average zero. However, differences in 

dynamic effects across groups can lead to large constituent 

2 × 2 DiD estimates (i.e., the potentially problematic 

2 × 2 s) that TWFE up-weights, leading to a significant 

aggregate TWFE DiD estimate. 

To illustrate this idea, we make the following modifica- 

tion to Simulation 6: 

˜ ROA 

6 ′ 
it = . 03 σROA 
 × I [ t ≥ g] × [ t − g] + ̃

 αi + ̃

 λt + ̃

 εit (11) 

for an observation i assigned to treatment group 

g ∈ { 1989 , 1998 , 2007 } , where . 03 σROA 
 is a normal 

distribution centered at zero with a standard deviation 

of 0 . 03 · σROA . Instead of assigning pre-determined trend- 

breaks to each of the three treatment groups, as in Sim- 

ulation 6, this modified simulation now draws the trend- 

breaks from a distribution centered around zero. Thus, 

we allow for heterogeneity in dynamic treatment effects 

across firms, but where the ATT is zero in expectation. 

As before, we run this simulation 500 times. We esti- 

mate the TWFE DiD regression for each simulated Com- 

pustat panel and compute the t-Statistic, using standard 

errors clustered at the state level. Figure 4 i plots the distri- 

bution of t-Statistics across the simulations and shows that 

the TWFE regression produces significant treatment effect 

estimates at the 5% level (or t-Statistics larger than 1.96 in 

absolute value) in 79% of the cases. In untabulated results, 

we find very similar results when restricting the average 

ATT within each simulated panel, at the observation- 

or the firm-level, to be exactly zero in the sample: we 

continue to find that TWFE estimates are significant at 

the 5% level in about 80% of the simulated samples. At 

this level of treatment effect heterogeneity, the biases 

associated with TWFE staggered DiD regressions lead to a 

large degree of over-rejection (excess Type-I errors). 

We also analyze how much treatment effect hetero- 

geneity is required to create spurious inferences in these 

regressions. We repeat the above exercise for different lev- 

els of treatment effect heterogeneity (different percentages 

of σROA ), from zero to 10 percent of the empirical ROA 

distribution. At each level of heterogeneity, we run the 

simulation 500 times as above and compute the percent 

of the simulations that yielded a t-Statistics larger than 

1.96 in absolute value. 

The results, plotted in Fig. 4 ii, show that just a little 

bit of treatment effect heterogeneity can have a significant 

impact on the degree of over-rejection. When there is no 

heterogeneity, 95% of the simulations (represented by the 

horizontal dashed line) produce insignificant t-Statistics (a 

5% Type-I error rate), as expected. However, Type-I error 

rates increase quickly as we introduce a small degree of 

treatment effect variation. For example, when the stan- 

dard deviation of the trend-break is one percent of σROA , 

more than half of the simulations produced significant 

t-Statistics, even though the average ATT is zero. As we 

further increase treatment effect heterogeneity, the percent 

of simulations that produce insignificant t-Statistics stabi- 

lize to around 20% (Type-I error rates stabilize to 80%). In 

summary, these simulations show that the TWFE DiD es- 

timator’s biases could easily result in spurious inferences. 



A.C. Baker, D.F. Larcker and C.C.Y. Wang Journal of Financial Economics 144 (2022) 370–395 

Fig. 4. Simulation: TWFE DiD Estimates When Expected ATT = 0 . 

Figure 4 , panel (i), plots the distribution of t -Statistics across 500 iterations of Simulation 6’ ( Eq. (11) ). All aspects of this simulation are the same as 

Simulation 6, except that trend breaks are drawn from a normal distribution with mean zero and standard deviation of 3% of the empirical ROA standard 

deviation in Compustat. The red shaded region in the distribution represents the insignificant (at the 5% level) t-Statistics from the 500 simulations. Panel 

(ii) plots the percent insignificant t-Statistics as a function of the treatment effect heterogeneity (i.e., the variation in the trend-break distribution in terms 

of the percent of ROA standard deviation). At each level of treatment effect heterogeneity, we repeat the exercise illustrated in panel (i) and record the 

percent of insignificant t-Statistics across 500 simulations. The horizontal dashed line represents 95%. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

3.2. Dynamic staggered DiD estimates 

We have thus far focused on the biases associated with

static TWFE DiD estimators, in which there is a single

aggregate treatment effect parameter of interest. However,

the combination of treatment effect heterogeneity and

staggered treatment timing also biases dynamic TWFE DiD

specifications (or “event study” specifications). 
380 
Researchers often estimate dynamic treatment effects 

using a generalized variant of Eq. (2) : 

y it = αi + λt + 

−2 ∑ 

l= −K 

μl D 

l 
it + 

L ∑ 

l=0 

μl D 

l 
it + εit , (12) 

where D 

l 
it 

= I [ t − E i = k ] is an indicator for a treatment 

unit i in cohort E (the period of treatment) being k 
i 
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7 The decomposition of is done for a more general version of 

Eq. (12) that allows for the grouping (or “binning”) and the exclusion of 

relative-time periods: 

y it = αi + λt + 

∑ 

b∈B 
I { t − E i ∈ b} + εit , 
periods from the start of treatment. Instead of using a

single binary treatment indicator ( D it in Eq. (2) ), the event-

study specification utilizes a set of relative-time indicators:

the first summation in Eq. (12) captures the time periods

leading up to the treatment (“leads”) and the second

summation captures the time periods following treatment

(“lags”). 6 Equation (12) follows the standard practice of

excluding the relative-time indicator for the period before

treatment to avoid multicollinearity; in settings with no

never-treated units, two excluded (pre-treatment) relative-

time indicators are necessary ( Borusyak et al., 2021 ). Thus,

the main parameters of interest, the μl ’s, are interpreted as

the difference between the outcome differences between

treated and untreated observations l periods from treat-

ment relative to the outcome differences between treated

and untreated observations in the excluded periods. 

Researchers implement event-study designs to ana-

lyze post-treatment effect dynamics and pre-treatment

trends in outcome differences between treated and control

units. The absence of observable “pre-trends” is often

provided as evidence consistent with the parallel-trends

assumption, which is not directly testable. 

Sun and Abraham (2021) (“SA”) shows that TWFE

dynamic treatment estimates from Eq. (12) are also

biased when there is variation in treatment timing

and treatment effect heterogeneity. Like Callaway and

Sant’Anna (2021) (“CS”), SA defines the estimand of in-

terest as the ATT for a particular treatment cohort at a

particular time: 

AT T g,l = E [ Y i,g+ l − Y ∞ 

i,g+ l | E i = g] . (13)

CATT, or the “cohort-specific ATT,” is defined in relative

treatment time terms and compares a treatment unit’s po-

tential outcome at a point in time if it received treatment

in time period g ( Y i,g+ l ) to the counterfactual outcome if

the unit never receives treatment ( Y ∞ 

i,g+ l ). 
One of SA’s main results (see Proposition 3 in the

paper) shows that, even when the parallel-trends and

no-anticipation assumptions hold, the population μb is

a linear and non-convex combination of post-treatment

CATTs from both its own relative period l and other

relative periods. 

μb = 

∑ 

l ′ ∈ b,l ′ ≥0 

∑ 

g 

w 

b 
g,l ′ CAT T g,l ′ 

+ 

∑ 

b ′ � = b,b ′ ∈B 

∑ 

l ′ ∈ b ′ ,l ′ ≥0 

∑ 

g 

w 

b 
g,l ′ CAT T g,l ′ 

+ 

∑ 

l ′ ∈ b excl ,l ′ ≥0 

∑ 

g 

w 

b 
g,l ′ CAT T g,l ′ (14)

The first term of this decomposition is what researchers

would like to identify because it represents the weighted

average of the CATTs across treatment cohorts in post-

treatment periods ( l ′ ≥ 0 ) within the relative-time bin b
6 The standard static specification in Eq. (2) can be expressed in terms 

of the post-treatment D l 
′ 

it 
s : 

y it = αi + λt + δDD 

( ∑ 

l≥0 

D 

l 
it 

) 

+ εit . 

381 
of interest. 7 The latter two terms represent linear combi- 

nations of post-treatment CATTs across cohorts in other 

relative-time periods that are included in (the second 

term) or omitted (the third term) from the dynamic speci- 

fication but belong to the sample. The bias stemming from 

the last two terms shows that the TWFE dynamic effect 

estimate for one relative-time period is contaminated 

by causal effects of other periods. The results of SA are 

thus an extension to Goodman-Bacon (2021) to dynamic 

effect estimates: the biases associated with TWFE DiD 

regressions under treatment effect potentially invalidates 

every event-study coefficient. 

In addition, SA shows that even with treatment effect 

homogeneity, which resolves the biases in static TWFE DiD 

estimates, dynamic treatment effect estimates can remain 

contaminated by CATTs from excluded periods (e.g., the 

last term of Eq. (14) ). In such a case, a combination of 

treatment effect homogeneity and ensuring that only 

pre-treatment periods (or generally those periods where 

CATT = 0) are excluded prevents the contamination. (Under 

no anticipation, the pre-period CATTs are zero.) Thus, the 

choice of excluded relative-time periods can lead to biases 

in TWFE dynamic specifications. 

SA’s analyses also show that the common practice of 

trimming (i.e., dropping from the sample) or binning (i.e., 

grouping) distant relative-time indicators does not resolve 

the contamination problems. 8 In fact, effect estimates from 

event-study specifications that bin relative-time periods 

continue to be contaminated by CATTs from periods in 

other relative-time bins, even under all of the assump- 

tions above (i.e., homogeneity and CATT = 0 for excluded 

relative-time periods). In these cases, a sufficient condition 

to avoid contamination is to group relative-time periods 

into bins only when their treatment effects are the same. 

Thus, the choice of relative-time bins per se can also lead 

to biases in TWFE dynamic specifications. 

Finally, a key implication of SA’s results is that the 

common practice of testing pre-trends using the coeffi- 

cients on the leads (e.g., the in the first summation term 

of Eq. (12) ) is not generally valid. The reason is that a 

given pre-treatment coefficient does not identify the rel- 

evant pre-period CATT but is contaminated by CATTs from 

all relative-time periods and across treatment cohorts. 

This contamination can result in significant pre-period 

estimates when pre-trends in CATTs do not exist or in- 

significant pre-period estimates when pre-trends exist. 
where E i is the treatment period for unit i , the set B collects disjoint sets 

b of relative periods, and some relative periods could be omitted from the 

specification. The excluded set is denoted b excl = { l : l / ∈ ⋃ 

b∈B b} . SA shows 

that the weights on the first, second, and third terms of Eq. (14) sum to 

1, 0, and -1, respectively. 
8 One difference noted in SA is that, for a given coefficient in the dy- 

namic specification, trimming mechanically removes the contamination 

stemming from CATTs in relative-time periods trimmed from the speci- 

fication. 
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Fig. 5. Simulation: TWFE Dynamic Treatment Effect Estimates with No Real Pre-Trends and Actual Pre-Trends. 

Figure 5 , left-hand panel, plots the distribution of event-study estimates based on a variant of Simulation 6 ( Eq. (10) ) in which there are no pre-period 

trends and post-treatment trend-breaks of the three different cohorts are δ1989 = 0 . 10 σROA , δ1998 = 0 . 05 σROA , and δ1998 = 0 . 01 σROA , where σROA is the empiri- 

cal ROA standard deviation in Compustat. For each of the 500 simulated Compustat panel datasets, we estimate a TWFE event-study specification ( Eq. (12) ) 

that includes relative-time indicators for the five years before and after the year of treatment (Relative Time = 0). We exclude the relative-time indicator 

for the year prior to treatment (Relative Time = -1). Moreover, we combine relative-time periods more than five years before treatment into one bin and 

relative-time periods more than five years after treatment into another bin. For each relative-time period from -5 to 5, we plot the point estimate (the 

solid circle), the 95% confidence interval (the vertical lines intersecting the solid circles), and the observation-average (“true”) ATT for each relative-time 

period (the dashed line). The right-hand panel plots the distribution of event-study estimates based on Simulation 7 ( Eq. (15) ), which has pre-treatment 

trends and but no treatment effects. Aside from the data generating function, all other aspects of this simulation are the same as the left-hand-side panel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(For a helpful simplified example, we refer readers to

Section 3.7 of their paper.) 

3.2.1. Simulation analysis 

To illustrate that TWFE event-study estimates lead

to misleading inferences, consider a variant of Simula-

tion 6 ( Eq. (10) ) in which the trend-breaks of the three

different cohorts are δ1989 = 0 . 10 σROA , δ1998 = 0 . 05 σROA ,

and δ1998 = 0 . 01 σROA . Like the previous simulations: each

treatment cohort has a positive average treatment effect,

the parallel-trends assumption holds, and treatment-

control ROA differences are zero in expectation in each

pre-treatment period (i.e., no pre-trends). 

As before, we generate 500 simulated Compustat sam-

ples of ROA s. With each sample, we estimate a TWFE

event-study specification ( Eq. (12) ) that includes relative-

time indicators for the five years before and after the year

of treatment (Relative Time = 0). To avoid collinearity,

we exclude the relative-time indicator for the year prior

to treatment (Relative Time = -1). Following standard

practice in the literature, we bin relative-time periods

further out in the event study window (i.e., more than five

years before or after treatment). 

Figure 5 , left-hand panel, plots the distribution of

estimated coefficients on the relative-time indicators. We

also plot the observation-level average ATT for comparison.

This figure confirms the theoretical result established in

SA: in the presence of heterogeneous treatment effects,

TWFE event-study estimates are biased. The post-period

effect estimates are negatively biased relative to the ATT.

The effect estimates for years four and five after treatment
382 
are both negative and statistically significant even though 

the actual effects are positive in both cases. 

Notably, the pre-treatment event-study estimates are 

also biased. Despite no real pre-trends in the data gener- 

ating process, the TWFE dynamic specification produced 

positive and statistically significant coefficients on pre- 

treatment relative-time indicators. A researcher may infer 

from the observed pre-trends that the parallel-trends 

assumption is violated, and that any post-treatment 

effect estimates are likely spurious, despite economi- 

cally significant true effects and the parallel-trends and 

no-anticipation assumptions being valid. 

Biases associated with TWFE event-study estimates 

could also lead researchers to infer a lack of pre-trends 

when the parallel-trends assumption does not hold. 

Consider the following data generating process: ˜ ROA 

7 

it = (0 . 01 σROA × G 1989 × I [ t < 1989] 

+ 0 . 035 σROA × G 1998 × I [ t < 1998] 

+ 0 . 035 σROA × G 2007 × I [ t < 2007]) 

× [ t − 1988 G 1989 + 1997 G 1998 + 2006 G 2007 ] + ̃

 αi 

+ ̃

 λt + ̃

 εit . (15) 

Each cohort has a treatment effect of zero in expectation; 

however, cohorts differ in terms of the pre-treatment 

trends in the outcome. Unlike Simulation 6, where group- 

specific trend-breaks in ROA apply after treatment, in 

this simulation, group-specific trend-breaks apply prior to 

treatment. Thus, this data generating process violates the 

parallel-trends assumption. 

However, estimating the TWFE dynamic specification 

described above produces an intriguing and comparatively 
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10 The authors provide an open-source R package (did) that implements 

all three types of estimators and allows for different types of clean con- 
persuasive event-study plot, shown in the right-hand panel

of Fig. 5 . All pre-period coefficients are statistically indis-

tinguishable from zero, consistent with the parallel-trends

assumption; moreover, the post-period coefficients suggest

a negative treatment effect over a longer horizon (e.g.,

three to five years after treatment). However, this spurious

event-study plot is driven by the biases associated with

TWFE event-study estimates and highlighted in SA. 

Together, the biases associated with static and dynamic

TWFE DiD estimates can lead to both Type-I and Type-

II errors. They may also influence researchers’ choice of

projects. Remedying these biases, we believe, is paramount

for applied research. 

4. Alternative estimators 

While the econometric literature has settled on the

theoretical problems with TWFE staggered DiD estimators,

it has proposed several alternative DiD estimation tech-

niques to circumvent them. We highlight three estimators

applied researchers should consider, either formally de-

veloped in the econometrics literature or adopted as a

remedy in the applied literature. In essence, each estima-

tor modifies the units that can act as effective comparison

units to avoid comparing treatment units to inappropriate

controls. However, the remedies differ in terms of which

observations may serve as effective control units and their

complexity and flexibility. 

4.1. Callaway and Sant’Anna (2021) and Sun and 

Abraham (2021) 

The first two estimators, developed by CS and SA, are

closely related. Each relies on first estimating the individ-

ual cohort-time-specific treatment effects (e.g., Eqs. (3) or

(13) ), allowing for treatment effect heterogeneity, then

aggregating them to produce measures of overall treat-

ment effects. However, CS and SA differ methodologically

regarding flexibility, accommodation of covariates, choice

of control groups, and inference. 

The simplest variant of the CS estimator boils down to

estimating cohort-time-specific treatment effects through

simple 2 × 2 s with clean controls. For example, the treat-

ment effect of a particular treatment group (i.e., treated at

time g) can be estimated via the following regression 

y it = αg,τ
1 

+ αg,τ
2 

· I { E i = g} + αg,τ
3 

· I { t = τ } + βg,τ

·( I { E i = g} × I { t = τ } ) , (16)

using observations at time τ and g − 1 from treated units i

with I { E i = g} = 1 , or from a set of clean control units. 9 CS

allows for not-yet-treated, last-treated, or never-treated as

clean controls, and shows that βg,τ is a valid estimator for

AT T (g, τ ) under no anticipation and unconditional parallel

trends. CS also derives estimators that are consistent for

AT T (g, τ ) under more general conditions, such as when

the parallel-trends assumption holds conditionally on co-

variates, including an outcome-regression-based estimator
9 Researchers may specify different baseline periods. For estimating 

pre-treatment effects (e.g., τ = g − 4 ), CS uses the prior period (e.g., τ = 

g − 5 ) as the baseline. 
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( Heckman et al., 1997 ), an inverse-probability-weighted 

estimator ( Abadie, 2005 ), and a doubly robust estimator 

( Sant’Anna and Zhao, 2020 ). 10 

SA proposes a fully parametric regression-based es- 

timator that estimates the full set of cohort-specific 

relative-time treatment effects (i.e., each CAT T g,l in the 

sample) jointly using an interacted specification that 

is saturated in relative-time indicators D 

k 
it 

and cohort 

indicators I { E i = g} : 
y it = αi + λt + 

∑ 

g / ∈ C 

∑ 

l � = −1 

μg,l (I { E i = g} · D 

l 
it ) + εit . (17) 

SA shows that, by including the full set of cohort-specific 

relative-time indicators, μg,l , are consistent for the CATTs 

under unconditional parallel trends and no anticipation. 

We note that in implementing Eq. (17) , always-treated 

firms are dropped, and the only units that can be used 

as effective controls are those that are never-treated or 

last-treated. 11 (When the last-treated are used as controls, 

they are never used as treated units.) 

There are two main differences between CS and SA’s 

methodologies for estimating group-time AT T s . First, CS 

allows for greater flexibility in selecting control groups: 

whereas SA allows only for never-treated or last-treated 

comparison units, CS additionally accommodates not- 

yet-treated units as controls. Second, CS allows for 

(pre-treatment and static) covariates (i.e., when condi- 

tional parallel-trends assumptions are more appropriate), 

while SA does not. When there are no covariates, and 

never-treated firms are used as effective controls, CS and 

SA provide numerically equivalent estimates. 

SA and CS also differ in terms of inf erence, which is 

not the focus of our paper. SA uses pointwise inference 

of average ATTs, whereas CS develops and argues for 

simultaneous confidence intervals, which can be estimated 

with a simple multiplier bootstrap procedure. SA directly 

estimates the asymptotic standard errors of its interaction- 

weighted estimator and does not use bootstrapping. 

Finally, both CS and SA provide solutions for aggre- 

gating the group-time ATTs. SA’s interaction-weighted 

three-step estimator focuses on event study type aggre- 

gation: the average CATT for a particular relative-time 

period τ uses the weighted average of the CAT T (g, τ ) 

over treatment cohorts using the sample shares of each 

cohort in the relevant periods. CS considers a variety of 

possible aggregations of group-time AT T s . It is, of course, 

possible to apply a weighting scheme like SA to create 

event-study plots. However, for researchers interested 

in a single overall effect estimate, CS recommends first 

computing the average AT T s for each treatment cohort 

(across all post-treatment periods) then reporting the 

weighted average ATTs across cohorts (e.g., weighting 

by each cohort’s sample share). This type of aggregation 
trols. A Stata package (csdid) written by Fernando Rios-Avila is also avail- 

able. 
11 The authors provide a Stata package (eventstudyinteract) that imple- 

ments their interaction-weighted estimator. An R package (fixest) written 

by Laurent Berge is also available. 
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produces an estimate of the average effect of participating

in the treatment experienced by all the units that ever

participated, similar in spirit to the interpretation of the

2 × 2 static DiD estimate. It is also possible to apply these

alternative weightings to SA’s CATT estimates. 

Overall, we view SA as being perhaps simpler (and

quicker) to execute because it simultaneously estimates

all the group-time treatment effects in one regression and

does not use bootstrapping for inference. However, the CS

approach is more flexible (e.g., allowing for covariates and

the use of not-yet-treated controls). In addition, it offers

more robust modeling options (e.g., outcome-regression,

inverse-probability-weighted, and doubly-robust estima-

tors, as well as simultaneous confidence intervals that

account for multiple-testing of relative-time indicators).

For these reasons, our replications of prior results in

Section 5 focuses on the application of the CS estimator. 12 

4.2. Stacked regression estimator 

An alternative approach developed by applied re-

searchers for circumventing the issues with TWFE DiD

estimators is a “stacked regression” (see, e.g., Gormley

and Matsa, 2011; Cengiz et al., 2019; Deshpande and

Li, 2019 ). We describe here one implementation of this

approach, used in Cengiz et al. (2019) . The idea is to

create event-specific “clean 2 × 2 ” datasets, including the

outcome variable and controls for the treated cohort and

all other observations that are “clean” controls within

the treatment window (e.g., not-yet-, last-, or never-

treated units). For each clean 2 × 2 dataset, the researcher

generates a dataset-specific identifying variable. These

event-specific data sets are then stacked together, and a

TWFE DiD regression is estimated on the stacked dataset,

with dataset-specific unit- and time-fixed effects. This

approach can be applied using either a static or a dynamic

specification ( Eqs. (2) or (12) ). The only difference in the

estimation equation between the standard TWFE approach

and a stacked regression alternative is defining the main

variables within each event-specific dataset, so that unit-

and time-fixed effects are saturated with indicators for

dataset identifiers (e.g., αig and λtg ). 

In essence, the stacked regression estimates the DiD

from each of the clean 2 × 2 datasets, then applies vari-

ance weighting to combine the treatment effects across

cohorts efficiently. This approach is likely the most eas-

ily implementable solution for researchers interested in

producing aggregated treatment effect estimates via OLS

while circumventing the problems introduced by staggered

treatment timing and treatment effect heterogeneity. In

addition, this estimator is efficient: it relies on OLS to

determine the weights on the clean 2 × 2 DiDs, trading

off bias for efficiency. However, relative to the CS or SA
12 de Chaisemartin and D’Haultføeuille (2020) also develop an ap- 

proach for estimating treatment effects under treatment timing vari- 

ation and treatment effect heterogeneity under more general settings, 

where treatments may be reversible. (Both CS and SA assume stag- 

gered adoption of irreversible treatments.) However, de Chaisemartin and 

D’Haultføeuille (2020) focuses on recovering simultaneous treatment ef- 

fects rather than the estimation of dynamic effects, and it does not allow 

for covariates. For these reasons, we do not emphasize this approach. 
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approaches, the stacked regression estimator provides less 

flexibility for aggregation and may be inconsistent for the 

sample-average ATT. 

4.3. Simulation: Alternative estimators 

Figure 6 compares the three alternative estimators 

under Simulations 1–6 (examined in Section 3.1.1 ). Here, 

we focus on a static estimator for the overall treatment 

effect from participating in treatment. CS and SA are 

unbiased for the sample ATT in the data in each case. 

(Note the sample ATT in this figure is different from 

that of Fig. 2 , because we only calculate the treatment 

effects for the cohorts with valid available comparison 

units, and only for the five years post treatment assign- 

ment.) On the other hand, stacked regressions can differ 

from the sample-average ATT, particularly when there 

is heterogeneity in treatment effects across cohorts or 

time. These differences reflect the alternative weighting 

of the constituent clean 2 × 2 s implicit in the stacked 

regression approach compared to CS or SA; they are not 

the result of potentially problematic 2 × 2 comparisons 

under dynamic treatment effects. Because OLS determines 

these weights by trading off bias for efficiency, stacked 

regression estimators also exhibit greater efficiency (i.e., a 

tighter distribution) in Fig. 6 relative to CS or SA. Notably, 

none of these alternatives exhibit the sign-flip problem of 

TWFE DiD estimators (i.e., Simulation 6 of Fig. 2 ). 

Figure 7 compares event-study estimates using each 

of the alternative approaches. For parsimony, we focus on 

Simulation 6, for which TWFE’s biases are most severe. 

Each of the alternative estimators is able to recover the 

true treatment path. The stacked regression approach 

generates slightly larger estimates relative to the sample- 

average ATT for each relative-time period, again resulting 

from the use of OLS variance-weighting rather than 

weighting by sample shares. 

Figures 6 and 7 illustrate that each of the alternative 

estimators is effective for estimating treatment effects in 

settings with staggered treatment timing and heteroge- 

neous treatment effects. Although the field has not yet 

settled on an established standard, we believe that applied 

researchers leveraging settings with staggered treatment 

timing should implement at least one of these alternatives. 

5. Applications 

We examine two papers published in top finance 

journals that rely on TWFE staggered DiD regressions to 

evaluate the effects of policies. Each was published before 

the advent of the econometrics literature on the flaws 

of TWFE estimation, applied the methodological tools 

available at the time, and had credible claims to causal 

identification. We replicate a portion of the main results, 

provide diagnostic tests demonstrating the distribution 

of treatment timing and the Goodman-Bacon (2021) de- 

composition when possible, and evaluate the extent to 

which the published results are robust to DiD methods 

that correct for the biases induced by treatment timing 

variation and treatment effect heterogeneity. We focus on 

the CS and stacked regression estimators for parsimony. 
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Fig. 6. Simulation: Distribution of Static Effect Estimates of Alternative Estimators. 

Figure 6 plots the distribution of static treatment effect estimates for the three alternative estimators explained in Section 4 . These distributions are 

generated based on applying the alternative estimators to each of the 500 simulated Compustat ROA panel datasets under Simulations 1–6. For each data 

generating process, we overlay the three distributions. The dashed vertical lines represent the observation-level or firm-level average ATT for the five-year 

period post treatment. 

Fig. 7. Robust DiD Methods with Staggered Treatment Assignment and Dynamic Treatment Effects. 

Figure 7 plots the distribution of treatment effect estimates by relative-time period for the three alternative estimators explained in Section 4 . These 

distributions are generated based on applying the alternative estimators to each of the 500 simulated Compustat ROA panel datasets under Simulation 6 

( Eq. (10) ), for which TWFE DiD estimates are highly biased. For each relative-time period from −5 to 5, we plot the point estimate (the solid circle), the 

95% confidence interval (the vertical lines intersecting the solid circles), and the observation-level average ATT for each relative-time period (the dashed 

blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

The Impact of Deregulation on Income Inequality. 

Panel A: Replication using TWFE 

No Controls With Controls 

(1) (2) 

Log Gini Log Gini 

Bank deregulation −0.022 ∗∗∗ −0.018 ∗∗∗

(0.008) (0.006) 

Observations 1519 1519 

Adj. R2 0.51 0.54 

Panel B: Alternative Estimators 

Callaway & Sant’Anna Stacked Regressions 

(1) (2) 

Log Gini Log Gini 

Bank deregulation 0.001 0.000 

(0.007) (0.005) 

Note: Table 2 , panel A, replicates the TWFE estimates of the effects of 

banking deregulation on inequality (using the natural logarithm of the 

Gini index as a proxy) from Table II of Beck et al. (2010) . The regression 

includes state- and year-fixed effects, and standard errors are clustered 

at the state level. We report the results with and without controls found 

in Table II of their paper. Panel B reports static effect estimates from 

Callaway and Sant’Anna (2021) and the stacked regression approach, us- 

ing treatment observations from five years before to ten years after the 

year of treatment, consistent with the event-study estimates in Fig. 10 , 

and their clean controls (not-yet-treated observations). ∗, ∗∗ , and ∗∗∗ de- 

note two-tailed significance tests at the 10%, 5%, and 1% levels, respec- 

tively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Beck et al. (2010) (BLL) 

BLL analyzes the income distribution effects of bank

branching deregulation in the United States, which oc-

curred across states and was staggered over time. By

exploiting the cross-state intertemporal variation in dereg-

ulation, BLL finds that the removal of interstate banking

restrictions led to a decline in income inequality. 

We begin by replicating the main result from Table II

of BLL, which provides static treatment effect estimates.

The authors use multiple measures of state-level income

inequality and find similar results across them. For parsi-

mony, our replication focuses on the log of the state-level

Gini index as the outcome of interest. Table 2 presents the

results from the following static DiD regression 

Log(Gini) st = αs + λt + δDD D st + εst , 

where αs and λt are state and year fixed effects, and D st is

an indicator set to 0 before a state allows interstate bank

branching and one afterward. We report results without

(column 1) and with (column 2) the time-varying covari-

ates used in the paper, as BLL does in Panels A and B of its

Table II. Table 2 , Panel A, replicates BLL’s point estimates. 13
13 The data and code used to replicate these results are publicly avail- 

able at https://dataverse.nl/dataset.xhtml?persistentId=hdl:10411/15996 . 

BLL creates state-level Gini index measures using the March Supplement 

of the Current Population Survey from 1977 to 2007. The sample includes 

prime-age individuals (25–54) with non-negative personal income, ex- 

cluding individuals with missing observations of key variables and those 

with total personal income below the 1st or above the 99th percentile of 

the distribution of income, among other restrictions. Overall, the dataset 

includes 31 years and 48 states plus the District of Columbia, totaling 

1519 observations. 
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Next, we provide diagnostics on the TWFE estimate in 

column 1, Table 2 . Figure 8 i plots the treatment timing 

across states, suggesting that there is significant variation, 

with most of the deregulation occurring between the 1970s 

and 1990s. However, the treatment timing variation also 

suggests that potentially problematic 2 × 2 s could influ- 

ence the static TWFE estimate. To examine this possibility, 

we implement the Goodman-Bacon (2021) diagnostic. 

Figure 8 ii graphically compares each 2 × 2 constituent DiD 

and its weight in the pooled OLS estimate across the two 

types of comparisons. Moreover, the bottom panel (iii) 

summarizes the data points in each panel by taking their 

weighted averages, represented as horizontal red lines in 

Fig. 8 ii. The decomposition indicates a reason for concern. 

BLL’s documented negative effects on income inequality 

are driven by a relatively small number of potentially 

problematic 2 × 2 s. These 2 × 2 s comparing later-treated 

states to earlier-treated states (as effective controls) pro- 

duce an average negative effect and receive a weight of 

0.86 in the overall TWFE estimate. In contrast, the clean 

2 × 2 s that compare earlier-treated to later-treated states 

(as effective controls) produce an average effect close to 

zero and receive a relatively low weight of 0.14 in the 

overall TWFE estimate. 

We also replicate BLL’s event-study analysis (Figure III 

of their paper), which plots the event-time coefficients 

and the standard errors from the following regression: 

log(Gini) st = αs + λt + β1 D 

−10 
st + β2 D 

−9 
st . . . β25 D 

+15 
st + εst . 

Instead of a single binary indicator (i.e., D st in the previous 

specification), this specification uses 25 separate indicator 

variables for the years relative to the year of adoption 

( g), from g − 10 to g + 15 . In addition, BLL bins the most 

distant relative-time periods: all years earlier than 10 

years before adoption are grouped in the g − 10 bin and 

all years greater than 15 years post adoption are grouped 

in the g + 15 bin. The year of treatment ( g + 0 ) is excluded 

from the specification as the reference year. In addition, 

BLL implements a normalization that subtracts the average 

of the pre-adoption coefficients from all of the plotted 

relative-time coefficients. The theoretical justification 

for this normalization is unclear; practically speaking, it 

achieves the effect of forcing the pre-adoption coefficients 

to be centered at zero. 

Figure 9 , Panel A, replicates BLL’s event-study plot, 

which suggests a negative effect of deregulation on income 

inequality. In the pre-adoption period, the relative-time 

dummies’ coefficients are centered around zero, suggesting 

a lack of pre-trends and consistent with the parallel-trends 

assumption. However, following deregulation, an immedi- 

ate and statistically significant negative effect appears and 

settles to a 4% decline in the Gini index over time. 

We make three changes to BLL’s event-study analysis 

to analyze the impact of the specification choices it makes. 

In Panel B, we plot the coefficients directly from the 

regression results without subtracting the mean of the 

pre-adoption coefficients. This adjustment shifts the event- 

study plot upwards without changing the trends; however, 

most post-period coefficients’ confidence intervals now 

cover zero. In Panel C, we additionally remove binning; 

we estimate a “fully dynamic” specification, following 

https://dataverse.nl/dataset.xhtml?persistentId=hdl:10411/15996
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Fig. 8. BLL: Treatment-Timing Plots and Goodman-Bacon Decomposition Diagnostic. 

Figure 8 , panel (i), plots the timing of banking deregulation across states in the Beck et al. (2010) sample. Blue tiles represent pre-deregulation observations, 

and red tiles represent post-deregulation observations. Panel (ii) plots the TWFE weights and 2 × 2 DiD estimates for each treatment-timing cohort, broken 

down by early- (as treatment) vs. later-treated states (as controls) comparisons (in the upper half of the panel) and later- (as treatment) vs. earlier-treated 

states (as controls) comparisons (in the lower half of the panel). Each dot is a unique comparison between treatment-timing cohorts (e.g., states treated in 

1990 compared to states treated in 1985). Panel (iii) reports the weighted average for each comparison type (bold horizontal lines in panel (ii) plots) and 

the total weight applied by TWFE. The overall TWFE ATT estimate is the weighted sum of each weighted average. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

Sun and Abraham (2021) and Borusyak and Jaravel (2018) ,

that includes the complete set of relative-time indicators

in the estimation. 14 However, we report only those co-

efficients from g − 10 to g + 15 , following BLL’s original

event-study analysis. Furthermore, in Panel D, we remove

all the states that deregulated prior to 1977 (i.e., states that

are always-treated in the sample) and all the observations

after 1999 (i.e., when all states have deregulated). 15 
14 As noted in both papers, you must omit two relative-time indicators 

to avoid perfect collinearity in staggered adoption designs with no never- 

treated units. We drop the relative-time indicators for the most negative 

relative-time period in addition to the year of treatment. 
15 BLL’s estimation uses the full panel of observations with surveys 

stretching from 1977 through 2007 even though all states deregulated 

by 1999 (see Fig. 8 i). As there are no effective control units, post-1999 

data cannot be used to identify a treatment effect. In addition, 13 states 

adopted branch reforms before the data started, and thus have no pre- 

adoption observations from which to calculate the first difference. We 

note that it is possible for researchers to justify the use of prior-treated 

units as comparisons units—for example, a number of years after treat- 

387 
Panels C and D show that removing binning signifi- 

cantly changes the event-study plots. These event-study 

plots now show an upward trend in income inequal- 

ity, in contrast to Panels A and B. These results are 

consistent with the theoretical analysis of Sun and 

Abraham (2021) discussed above: under heterogeneous 

treatment effects, binning relative-time periods per se can 

bias TWFE staggered DiD dynamic effect estimates. 

We stress the possibility that none of the event studies 

in Fig. 9 paint an accurate picture of the effects of bank- 

ing deregulation on income inequality. Under treatment 

heterogeneity, all of the dynamic TWFE staggered DiD 

estimates in each panel could be biased. Therefore, we 

apply the CS and stacked regression approaches to provide 

a better benchmark for BLL’s dynamic effect estimates. 
ment when it can be safely assumed that treatment effects no longer ac- 

crue. However, such choices are best justified based on knowledge of the 

institutional details relating to the research setting. 
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Fig. 9. BLL: TWFE DiD Event-Study Plots. 

Figure 9 plots TWFE event-study estimates and 95% confidence intervals for relative-time periods from l = g − 10 to l = g + 15 around deregulation 

( l = g + 0 ). Panel (A) reports estimates from our replication of the event-study analysis in Beck et al. (2010) . In this specification, the average value pre- 

adoption coefficients is subtracted from all of the event-study estimates so that the pre-period coefficients are centered at zero. Panel (B) presents estimates 

from a specification similar to (A) but does not subtract the average of the pre-treatment coefficients. Panel (C) presents estimates from a specification 

similar to (B). However, it removes the binning of relative-time periods more than ten years prior to deregulation and the binning of relative-time periods 

more than fifteen years after deregulation. Panel (D) presents estimates from a specification identical to (C) but estimated on a modified sample, which 

drops all state-year observations for which deregulation occurred before the beginning of the panel dataset and drops all observations after all states have 

deregulated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 10 i, we implement the CS estimator in two

ways: one that uses the last-adopting states (Panel A) and

one that uses later-adopting states (Panel B) as effective

comparison units. We aggregate group-time treatment ef-

fects by relative time and report both the point estimates

and standard errors for relative-time periods from g − 5 to

g + 10 . Across both panels, the CS estimates do not sug-

gest a decline in income inequality after banking deregu-

lation. If anything, both panels suggest marginal evidence

of an increase in inequality several years after deregula-

tion. 

Figure 10 ii reports event-study estimates using the

stacked regression approach. In Panel A, we stack cohort-

specific datasets that include observations from states that

deregulate in a certain year (treated) and all states that

do not deregulate within 10 years (effective controls). In

Panel B, we stack cohort-specific datasets that include all

states that deregulate in that year (treated) and all other

state-year observations that are not-yet-treated (effective

controls). We keep only state-year observations within -

5 and 10 years of the given treatment year and estimate

the event-study specification on the stacked data, using

dataset-specific time- and state-fixed effects. These results

are similar to those using CS and show little evidence of a
388 
significant decline in income inequality following banking 

deregulation. 

Finally, we provide alternative estimates of the overall 

inequality effect from banking deregulation. Table 2 , Panel 

B, reports the overall treatment effect estimate using 

CS (column 1) and stacked regression (column 2). (For 

parsimony, we implement only the regression-based CS 

estimator and not the inverse-probability-weighted or 

doubly-robust variants.) In both cases, we use later-treated 

states as effective controls and, to stay consistent with 

the event-study analysis in Fig. 10 i and ii, only include 

the relative-time periods in the g − 5 to g + 10 window. 

Because all states are treated by 1999, none of the stacked 

datasets include observations after 1999. 

The CS and stacked regression aggregate effect es- 

timates are similar in magnitude, close to zero, and 

statistically insignificant at the 10% level. These results 

differ substantially from the negative and statistically 

significant static estimate in Panel A. Together, both static 

and dynamic estimates from the alternative estimators 

raise doubts about whether banking deregulation impacted 

income inequality. 

Our replication of BLL highlights the potential severity 

of the biases in TWFE staggered DiD treatment effect es- 
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Fig. 10. BLL: CS Estimator and Stacked Regression Event-Study Plots. 

Figure 10 plots the event-study estimates and 95% confidence intervals for relative-time periods from l = g − 5 to l = g + 10 around deregulation ( l = g + 0 ), 

estimated using the Callaway and Sant’Anna (2021) regression estimator and stacked regression estimator described in Section 4 . Panel (i) provides two 

figures of event-study coefficients from the Callaway and Sant’Anna (2021) estimator that differ based on the effective control units used in the estimation. 

Figure (A) includes only the last-treated states as effective comparison units, while figure (B) uses not-yet-treated states. Panel (ii) provides two figures of 

event-study coefficients from the stacked regression approach that differ based on the effective control units used in the estimation. Figure (A) uses all 

states that do not deregulate within ten years of the treated cohort in each stacked dataset, while figure (B) uses all state-year observations that are pre- 

treatment relative to the treatment cohort’s treatment timing in each stacked dataset. Thus, Figure (B) allows more observations to act as effective control 

units than figure (A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

timates and the substantial differences in inferences from

applying the remedies suggested by the econometrics or

applied literature. These biases could lead researchers to

infer significant effects when they do not exist. We explain

in Section 3 and Figs. 4 and 5 why this is possible in both

static and event-study staggered DiD specifications. 

5.2. Fauver et al. (2017) (FHLT) 

A long literature in corporate governance examines

the relation between board governance practices and firm

performance or value in the US; however, there is scant

evidence in other countries. FHLT analyzes data on 41

major board reforms worldwide that either impose or

recommend board, audit committee, or auditor indepen-

dence or call for the separation of the chairman and CEO

positions. The paper’s identification strategy relies on the

staggered implementation of these country-level board
389 
reforms from 1990 to 2012. FHLT finds that the reforms 

increased average firm value, as measured by Tobin’s Q. 

We begin by replicating FHLT’s main regression specifi- 

cation: 

Q it = αi + λt + δDD P ost it + γ ′ x it + εit , 

where Q it is a firm-year measure of Tobin’s Q, αi and λt are 

firm- and year-fixed effects, Post it is an indicator evaluat- 

ing to one for firm-year observations after a board reform 

in a firm’s headquarter country, and x it are time-varying 

firm and country-level controls intended to mitigate 

confounding events and correlated omitted variables. 

The paper uses two different effective dates for defining 

the board reform “treatment”: one based on the timing of 

the “major” board reforms, as defined by the authors, and 

another based on the timing of the first board reforms. 

Figure 11 plots the timing of major and first board reforms 

across countries. Because we are using firm-level data, 

different countries receive different weights in the DiD 



A.C. Baker, D.F. Larcker and C.C.Y. Wang Journal of Financial Economics 144 (2022) 370–395 

Fig. 11. FHLT: Treatment-Timing Plots. 

Figure 11 plots the timing of board reforms (both the major reforms and the first reforms) across countries in the Fauver et al. (2017) sample. Blue tiles 

represent pre-reform observations, red tiles represent post-reform observations, and empty tiles represent missing data. The shade of the tile indicates 

the number of firm-year observations for each country: countries with more firm-year observations appear with darker tiles. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

The Impact of Board Reforms on Firm Value. 

Panel A: Replication using TWFE 

With Covariates Without Covariates 

(1) (2) (3) (4) 

Major Reform First Reform Major Reform First Reform 

Reform 0.096 ∗∗∗ 0.149 ∗∗∗ 0.110 ∗∗ 0.136 ∗∗

(0.03) (0.05) (0.05) (0.07) 

Control variables Yes Yes No No 

Firm fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Observations 196,016 196,016 196,016 196,016 

Adj. R2 0.580 0.581 0.536 0.536 

Panel B: Alternative Estimators 

Callaway & Sant’Anna Stacked Regressions 

(1) (2) (3) (4) 

Major Reform First Reform Major Reform First Reform 

Reform 0.062 0.116 0.063 0.166 ∗∗∗

(0.135) (0.094) (0.051) (0.055) 

Note: Table 3 , panel A, replicates the TWFE estimates of the effects of board reform on Tobin’s Q from Table 4B of Fauver et al. (2017) . The first two columns 

replicate the published values with firm and country covariates. In the third and fourth columns, we present the results without including covariates. 

All estimates use firm and year fixed effects, and robust standard errors are clustered at the country level. Panel B reports static effect estimates from 

Callaway and Sant’Anna (2021) and the stacked regression approach, using treatment observations from five years before to five years after the year of 

treatment, consistent with the event-study estimates in Fig. 13 , and their clean controls (not-yet-treated observations). ∗, ∗∗ , and ∗∗∗ denote two-tailed 

significance tests at the 10%, 5%, and 1% levels, respectively. 

 

 

 

 

 

 

 

due to having different numbers of listed firms. In the

plot, countries with more firm-year observations appear

with darker tiles. 

Table 3 , Panel A, columns 1 and 2 replicate the re-

sults of Fauver et al. (2017) (i.e., Table 4B of their paper)

that use the full data panel with both reform defini-

tions. We replicate the point estimates exactly but obtain

slightly different standard errors due to how different
390 
software packages calculate clustered standard errors in 

fixed-effects regressions. 

We also report TWFE DiD estimates without covariates 

in columns 3 and 4, which are similar to those of columns 

1 and 2 both in terms of economic magnitudes and sta- 

tistical significance. Consistent with FHLT, our replication 

shows that board reforms are associated with higher 

Tobin’s Q. Effect sizes using the timing of the first reforms 
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16 Specifically, when considering the first (major) reforms as “treat- 

ment,” all countries are treated by 20 06 (20 07). Although the panel 

data contains observations through 2012, the observations after the final- 

treatment years are not useful for the DiD without imposing more struc- 

ture on the length of treatment effect dynamics and are dropped from 

our two event-study analyses. We set the relative-time indicators to zero 

for the firms in the last-treated countries. 
are about 20% to 50% larger than those using the major

reforms. 

Ideally, in analyzing the degree to which FHLT’s TWFE

DiD estimates are susceptible to potential biases due to

treatment effect heterogeneity, we would implement the

Goodman-Bacon (2021) diagnostic. However, the diagnos-

tic applies to only balanced panels, and FHLT’s panel is

highly unbalanced. 

Our analysis of FHLT’s results thus proceeds by ex-

amining how effect estimates differ under alternative

estimators. Following the structure of the BLL replication

above, we start by examining FHLT’s event-study TWFE

DiD estimates and comparing the results to the dynamic

effect estimates under the CS and stacked regression

approaches. Finally, we provide an aggregate value effect

estimate of board reforms on the adopting countries’

firms using the CS and stacked regression approaches and

compare them to FHLT’s main static effect estimates. We

focus on the specifications that do not include covariates

in these analyses. 

We replicate BLL’s event-study analysis (Table 4 Panel C

of their paper), which estimates the following regression: 

Q it = αi + λt + β1 D 

−1 
it 

+ β2 D 

0 
it + β3 D 

+1 
it 

+ β4 D 

+2 
it 

+ εit . 

Instead of a single binary indicator (i.e., Post it in the pre-

vious specification), this specification uses four separate

indicator variables for the years relative to the year of

adoption. This estimation equation follows FHLT’s con-

vention for denoting relative-time periods, in which Year

1 ( D 

+1 
it 

) is the first effective year of board reform (as

opposed to the usual convention of Year 0 ( D 

0 
it 

)). 

We highlight several sample and specification choices

FHLT makes in estimating this event study regression. First,

this specification is estimated on a truncated sample that

drops observations outside of five years prior to or five

years after the first year of reform adoption. Second, this

specification excludes all relative-time periods more than

two years prior to the first year of reform ( D 

−2 
it 

, D 

−3 
it 

, D 

−4 
it 

)

as reference periods. Third, FHLT combines all relative-time

periods from Year 2 to Year 6 into one bin ( D 

+2 
it 

). 

Figure 12 i, Model 1, replicates FHLT’s event-study es-

timates. Instead of reporting them in table form, we plot

the point estimates and 95% confidence intervals. Model 1

suggests a positive value effect from the adoption of major

board reforms. 

Similar to our analysis of BLL’s event-study design,

we make three changes to FHLT’s event-study analysis to

analyze the impact of the specification choices it makes.

In Model 2, we include additional pre-period relative-time

indicators in the specification that were omitted in Model

1: D 

−2 
it 

and D 

−3 
it 

. Sun and Abraham (2021) shows that the

choice of exclusion periods could lead to biases in TWFE

dynamic effect estimates, particularly when researchers

exclude post -treatment relative-time periods from event-

study specifications. Our modification in Model 2 shows

a similar pattern to Model 1, suggesting that the choice

of excluding additional pre-period relative-time indicators

did not have a meaningful impact on the overall inference.

In Model 3, we additionally remove binning; we es-

timate a fully dynamic specification that includes the

complete set of relative-time indicators in the estimation.
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To implement this specification, we omit the relative-time 

indicators from one and five years prior to the reform to 

avoid perfect collinearity. The resultant event-study plot 

provides a dramatically different picture: we no longer 

observe an apparent positive effect after reform, and all 

the point estimates are much closer to zero. 

Finally, in Model 4, we estimate a fully dynamic 

specification using the whole sample. We include the 

complete set of relative-time indicators in the estimation 

(beyond five years before and after the reform), exclude 

the indicator for the most negative relative-time period 

and the indicator for the year prior to the reform, and 

report only those coefficients from the window between 

the five years prior to five years after reform. In estimating 

this model, we also exclude observations after the final 

treatment, like Panel D of Fig. 9 , because these observa- 

tions have no effective controls thus cannot be used to 

identify treatment effects. None of the remedies described 

in Section 4 use these observations. 16 The event-study 

plot for Model 4 is similar to that for Model 3 and again 

does not suggest strong evidence of a positive value effect 

from major board reforms. One difference is that Model 

4 identifies an additional coefficient (i.e., for g − 4 ), which 

is possible because it uses observations outside of the 

ten-year window surrounding the reform. 

Figure 12 ii analyzes FHLT’s event-study estimates of the 

value effects of the first board reforms, following the same 

sequence of modifications as Fig. 12 i. Again, we show 

that including additional pre-period relative-time indicator 

results in similar dynamic effect estimates. However, 

once we relax the binning of post-treatment relative-time 

periods or estimate the fully dynamic specification on 

the whole sample, we no longer find strong evidence 

of positive value effects stemming from the first board 

reforms. These results reinforce the important role of 

binning relative-time periods on event-study estimates, as 

shown in our BLL replication. To the extent that dynamic 

effects in Tobin’s Q apply after the implementation of 

board reforms, FHLT’s choice to begin binning one year 

after the reform (e.g., instead of binning the most distant 

relative-time periods) could accentuate the potential bias 

in TWFE event-study estimates ( Sun and Abraham, 2021 ). 

It is possible that none of the event studies in 

Fig. 12 paint an accurate picture of the value effects 

of board reforms. Under treatment heterogeneity, all of 

the dynamic TWFE staggered DiD estimates in each panel 

could be biased. 

To provide a benchmark for FHLT’s dynamic effect 

estimates, we apply the CS and stacked regression ap- 

proaches. We focus only on the variants that use the 

greatest number of pre-treatment observations and choose 

later-treated firms as clean control units. As with Fig. 12 , 

we report only the dynamic effect estimates within the 
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Fig. 12. FHLT: TWFE DiD Event-Study Plots. 

Figure 12 plots TWFE event-study estimates and 95% confidence intervals for relative-time periods from l = g − 4 to l = g + 6 around board reform ( l = 

g + 1 ). Panel (i) plots estimates from specifications that use major reforms as the treatment of interest. Model 1 reports estimates from our replication 

of the event-study analysis in Fauver et al. (2017) . This specification is estimated on a truncated sample that drops observations outside of five years 

prior to ( l = g − 4 ) or five years after ( l = g + 6 ) the first year of reform adoption; it excludes all relative-time periods more than two years prior to the 

first year of reform ( l ∈ { g − 4 , g − 3 , g − 2 } ) as reference periods; and it combines all relative-time periods from Year 2 to Year 6 into one bin ( l = g + 2 ). 

Model 2 presents estimates from a specification similar to Model 1 but adds additional pre-period relative-time indicators that are omitted in Model 1: 

l ∈ { g − 3 , g − 2 } . Model 3 presents estimates from a specification similar to Model 2 but removes binning of relative-time periods from Year 2 to Year 6. 

Finally, Model 4 presents estimates from a fully dynamic specification that includes the complete set of relative-time indicators in the estimation, similar 

to Model 1, but estimated on the whole sample. Panel (ii) reports the same estimates for the first reforms following the same sequence of modifications 

as in panel (i). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g − 5 to g + 5 window. However, unlike Fig. 12 , we revert

to the convention of denoting the year of treatment as

relative-time period of 0. 

Figure 13 i and ii present the results from CS and

stacked regression estimators. They again do not suggest

strong evidence of a statistically significantly positive

impact of the reforms on firm valuation, either when we

consider major reforms (Panel A) or first reforms (Panel B)

as the treatment. Both CS and stacked regression estimates

suggest a statistically significant negative effect on firm

value five years after a major reform. 

Finally, we provide alternative estimates of the overall

value effect from adopting board reforms. Table 3 , Panel

B, reports the overall treatment effect estimate using

the regression-based CS estimator (column 1) and stacked

regression estimator (column 2). In both cases, we use not-

yet-treated firms as effective controls and, to stay consis-

tent with the event-study analysis in Fig. 13 , only include

the relative-time periods in the g − 5 to g + 5 window. 

The CS aggregate effect estimate is statistically insignif-

icant at the 10% level, regardless of whether we consider
392 
first reforms or major reforms as the treatment. Moreover, 

compared to the TWFE estimates in columns 3 and 4 of 

Panel A, these CS estimates are smaller in magnitude and 

have larger standard errors. 

The stacked regression aggregate effect estimates are 

mixed. For major reforms, stacked regression also produces 

a statistically insignificant effect at the 10% level, and the 

point estimate is similar to that of CS. However, stacked 

regression produces a positive and significant effect as- 

sociated with the first reforms. This is in part because 

stacked regression estimates are generally more precise 

and have lower standard errors compared to CS. Another 

reason is that the first reform effect estimate from stacked 

regression is relatively large. 

To understand this significant first reform effect esti- 

mate, we further scrutinize the corresponding dynamic 

effect estimates in Fig. 13 ii, Panel B. This plot reveals some 

evidence of pre-trends: the effect estimate three years 

prior to reform ( g − 3 ) is negative, statistically significant, 

and monotonically increasing thereafter until the year of 

reform. Because the stacked regression aggregate effect 



A.C. Baker, D.F. Larcker and C.C.Y. Wang Journal of Financial Economics 144 (2022) 370–395 

Fig. 13. FHLT: CS Estimator and Stacked Regression Event-Study Plots. 

Figure 13 plots the event-study estimates and 95% confidence intervals for relative-time periods from l = g − 5 to l = g + 5 around board reform ( l = g + 0 ) 

estimated from the Callaway and Sant’Anna (2021) regression estimator and stacked regression estimator described in Section 4 . Panel (i) provides two 

figures showing the event-study coefficients from the Callaway and Sant’Anna (2021) estimator using not-yet-treated units as effective comparison units, 

but differ based the source of treatment variation. Figure (A) uses major reforms while figure (B) uses first reforms as the treatment of interest. Panel (ii) 

provides two figures showing the event-study coefficients from the stacked regression approach, each using not-yet-treated units as effective com parison 

units. Figure (A) uses major reforms, while figure (B) uses first reforms as the treatment of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

estimate is, in essence, the difference between the post-

period and the pre-period dynamic effect estimates, the

significantly positive aggregate effect in part reflects the

presence of pre-trends. In contrast, the CS aggregate effect

estimates essentially aggregates the post-period dynamic

effects shown in Fig. 13 i, Panels A and B. 

To summarize, while our analysis of FHLT suggests that

first reforms could have been associated with a significant

increase in firm value, this finding could be confounded by

the presence of pre-trends. For example, it is possible that

countries adopted initial board reforms after periods of

relatively low firm value. While a full exploration of these

issues is beyond the scope of our analysis, at a minimum,

our analysis suggests that the value effects of global board

reforms are not as robust as initially believed. 17 
17 Fauver et al. (2021) (FHLT21) argues that the conclusions in FHLT are 

valid after performing various analyses to address the aforementioned is- 

sues. FHLT21 applies the stacked regression approach to a new sample 

that adds observations from three additional countries that never adopted 

393 
6. Conclusion and recommendations 

Staggered DiD regressions commonly used by applied 

researchers are susceptible to biases introduced by treat- 

ment effect heterogeneity. We argue that these biases 

apply to a large portion of research settings in finance, 

accounting, and law involving staggered treatment timing. 

We conclude by providing a set of practical recommenda- 

tions for applied researchers interested in exploiting such 

settings for causal inference. 

1. TWFE DiD regressions are appropriate in settings with 

a single treatment period or where homogeneous 

treatment effects can be assumed. In the latter case, 
board reforms between 1990 to 2012: Ivory Coast, Venezuela, and Viet- 

nam. We do not scrutinize these new analyses here. Our main goal is to 

assess the robustness of FHLT’s original findings to the alternative estima- 

tors proposed, using the original dataset, a standard set of clean controls, 

and a minimal amount of sample modifications to facilitate estimation. 
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researchers should provide theoretical justification for

homogeneity. 

2. Researchers continuing to report TWFE staggered DiD

regressions should provide an assessment of the like-

lihood of bias. We suggest that it is a good practice to

plot the treatment timing across cohorts: significant

variation in treatment timing suggests the possibility

of biases. We also recommend decomposing the static

TWFE DiD estimator (e.g., the Goodman-Bacon, 2021 ,

decomposition) when possible. When such decompo-

sition is not available (e.g., if the panel is unbalanced),

and never-treated firms are appropriate effective con-

trols (i.e., the parallel-trends assumption is likely to

hold), researchers may report the percent never-treated

observations in the sample: the larger the percentage

of never-treated units, the less problematic the biases

associated with TWFE staggered DiD regressions. In

addition, researchers should articulate the expected

heterogeneity in treatment effects. For example, the

larger the expected long-run effects, the more likely

are TWFE biases. 

3. Researchers implementing TWFE staggered DiD event-

study specifications should avoid binning relative-time

periods unless they have reasons to believe homoge-

neous effects apply in the relative-time periods within

a bin. We suggest fitting the complete set of possible

relative-time indicators in the event-study DiD, even

if reporting coefficients on only a subset of them. We

also recommend that researchers manually specify and

justify the reference periods, which should generally

be pre-treatment periods with no expected treatment

anticipation. Specifying regression models with mul-

ticollinearity may lead statistical software packages

to automatically drop relative-time periods, which

can create biases (e.g., if post-treatment relative-time

periods are omitted). 

4. With differential treatment timing and justifiable con-

cern for bias, researchers should apply at least one of

the alternative estimators. Those wishing to stay close

to TWFE staggered DiD regressions can implement

stacked regressions as a baseline. We suggest that, in

doing so, researchers report a variant of the stacked re-

gression without time-varying covariates to understand

the robustness of the effect estimates and the degree to

which they rely on the inclusion of controls (see foot-

note 3). For a more flexible estimator, we recommend

researchers apply the regression, inverse-probability-

weighted, or doubly-robust variants of Callaway and

Sant’Anna (2021) . Another alternative is to analyze

each treatment event separately: e.g., estimate a sep-

arate TWFE DiD regression for each event using clean

controls. Such an approach does not provide an aggre-

gation of the treatment effects, though the resultant

distribution of treatment effects may be helpful to

report. 

5. In applying the alternative estimators, researchers

should justify their choice of “clean” comparison

groups—not-yet treated, last treated, or never treated—

and articulate why the parallel-trends assumption is

likely to apply. When using not-yet- or last-treated

units as comparison groups in a given event window,
394 
researchers should also validate the assumption of no 

anticipatory effects for these units. 

6. Regardless of the estimators used, static DiD estimates 

should be accompanied by event-study estimates that 

trace out the timing of outcome differences between 

treated and control units. In both cases, the length 

of time in each treatment cohort’s event window in- 

cluded in the analysis can impact the treatment effect 

estimates. For example, the aggregate treatment effect 

estimate based on CS depends on how many post- 

treatment relative-time periods’ ATTs are aggregated. 

This is a design choice that should be defended by the 

researcher and guided by the specific research question 

and relevant institutional knowledge. 

We believe these practices will significantly increase the 

credibility of staggered DiD studies. 
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