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Abstract

Difference-in-Differences (DiD) is arguably the most popular quasi-experimental research
design. Its canonical form, with two groups and two periods, is well-understood. However,
empirical practices can be ad hoc when researchers go beyond that simple case. This article
provides an organizing framework for discussing different types of DiD designs and their
associated DiD estimators. It discusses covariates, weights, handling multiple periods, and
staggered treatments. The organizational framework, however, applies to other extensions of
DiD methods as well.

1 Introduction

Dating to the 1840s, Difference-in-Differences (DiD) is now the most common research design for
estimating causal effects in the social sciences.1 A basic DiD design requires two time periods,
one before and one after some treatment begins, and two groups, one that receives a treatment
and one that does not. The DiD estimate equals the change in outcomes for the treated group
minus the change in outcomes for the untreated group: the difference of two differences. If the
average change in the outcomes would have been the same in the two groups had treatment not
occurred, a so-called parallel trends assumption, this comparison estimates the average treatment
effect among treated units.

∗University of California, Berkeley
†University of Georgia
‡Baylor University
§Opportunity and Inclusive Growth Institute, Federal Reserve Bank of Minneapolis
¶Emory University
1Currie, Kleven and Zwiers (2020) find that almost 25% of all NBER empirical working papers in 2018 and

17% of empirical articles in economics’ top 5 journals mention them. The earliest DiD applications we are aware of
are from Ignaz Semmelweis from the 1840’s (Semmelweis, 1983) and Snow (1855). For a brief overview of the long
history of DiD in economics, see Section 2 of Lechner (2011).
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In practice, however, researchers apply DiD methods to situations that are more complicated
than the classic two-period and two-group (2ˆ2) setup. Most datasets cover multiple periods, and
units may enter (or exit) treatment at different times. Treatment might also vary in its amount or
intensity. Other variables are often used to make treated and untreated units more comparable.
Today’s typical DiD study includes at least one of these deviations from the canonical 2ˆ 2 setup.

For many years, the common practice in applied research was to estimate complex DiD designs
using linear regressions with unit and time fixed effects (two-way fixed effects, henceforth TWFE).
Their identifying assumptions and interpretation were informally traced to the fact that, in the
2 ˆ 2 case, a TWFE estimator gives the same estimate as a DiD estimator calculated directly
from sample means, and thus inherits a clear causal interpretation under a specific parallel trends
identification assumption. This appeared to justify the use of a single technique for any type of
design or specification. Recent research, however, has shown that simple regressions can fail to
estimate meaningful causal parameters when DiD designs are complex and treatment effects vary,
producing estimates that are not only misleading in their magnitudes but potentially of the wrong
sign; for recent overviews, see, e.g., Roth, Sant’Anna, Bilinski and Poe (2023), de Chaisemartin
and D’Haultfoeuille (2023b), and Callaway (2023). The significance of these findings is substantial;
given the prevalence of DiD analysis in modern applied econometrics work, common empirical
practices have almost certainly yielded misleading results in several concrete cases (Baker, Larcker
and Wang, 2022).2

So, what should applied researchers do instead? This paper proposes a unified framework for
discussing and conducting DiD studies that is rooted in the principles of causal inference in the
presence of treatment effect heterogeneity. The central conclusion of recent methodological research
is that even complex DiD studies can be understood as aggregations of 2ˆ 2 comparisons between
one set of units for whom treatment changes and another set for whom it does not. This fact links
a wide variety of DiD designs used in practice and guides methodological choices about estimating
them. Viewing DiD studies through the lens of 2 ˆ 2 “building blocks” aids in interpretability
by clarifying that they yield causal quantities that aggregate the treatment effects identified by
each 2 ˆ 2 component. It also means that identification comes from the simple parallel trends
assumptions required for each 2 ˆ 2 building block. Practically, the building block framework
suggests first estimating each 2 ˆ 2 and then aggregating them. As long as the effective sample
size is large, this approach allows for asymptotically valid inference using standard techniques.

This framework is a “forward-engineering” approach to DiD that embraces treatment effect het-
erogeneity and constructs estimators that recover well-motivated causal parameters under explicitly
stated assumptions. By fixing the goals of the study (the target parameters) and deriving analyt-
ical techniques, forward engineering provides clear benefits over “reverse-engineering” approaches
that begin with a familiar regression specification and derive the assumptions under which it has

2Braghieri, Levy and Makarin (2022) also shows how newer DiD methods can lead to first-order different results
when compared to standard TWFE regressions.
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some causal interpretation. The methods we describe in this paper combine familiar techniques
with some newer ones, but expressly avoid the difficulties of interpretation inherent in common
regression estimators (Goodman-Bacon, 2021; de Chaisemartin and D’Haultfoeuille, 2020; Sun and
Abraham, 2021; Borusyak, Jaravel and Spiess, 2024). Moreover, this interpretation changes across
specifications, making it hard to understand the difference between non-robustness and a shifting
target parameter. In contrast, our proposed framework naturally leads to estimation procedures
that target the same parameter under different transparent identification assumptions. Thus, two
estimates can be distinguished easily by their identifying assumptions. Finally, the principles of
the forward-engineering approach provide guidance to good econometric practices even in settings
without well-established methodological findings.

This paper is not designed to be a comprehensive literature review; its goal is to provide
guidelines for practitioners who want to better understand DiD and its various forms. Because of
the tremendous variations in design, data, and specification that practitioners encounter, we opt to
focus on three of the most common aspects of modern DiD studies: the use of weights, covariates,
and staggered treatment timing. We apply techniques to address these issues to a specific example:
the causal effect of recent public health insurance expansions in the US on county-level mortality.
In an appendix, we briefly discuss related DiD designs with different treatment variables (ones
that turn on and off or take many values), additional comparisons (i.e., triple-difference designs),
distributional target parameters, or different data structures (repeated cross-sections or unbalanced
panels). Several recent reviews follow the logic laid out here and review additional DiD-related
topics and technical details Roth et al. (2023); de Chaisemartin and D’Haultfoeuille (2023b);
Callaway (2023).

The rest of the paper is structured as follows. Section 2 introduces the Medicaid running
example. Section 3 discusses the canonical 2 ˆ 2 DiD setups with and without weights, and
Section 4 discusses threats to the identification assumptions, how to assess them, and how to
incorporate covariates to make them more plausible, all of this still in a 2 ˆ 2 setup. Section 5
extends the 2ˆ2 setup to multiple periods with potentially staggered treatment adoption. Section
6 concludes and briefly discusses some extensions that involve more complex DiD designs.

2 Medicaid and Mortality: The running example

To make our methodological discussion concrete, we revisit a timely and important causal question:
How did the expansion of public health insurance (Medicaid) under the Affordable Care Act (ACA)
affect mortality?

Medicaid expansion is a great example of a staggered treatment adoption. The ACA originally
mandated that in 2014 all states expand Medicaid eligibility to adults with incomes up to 138%
of the federal poverty threshold. In upholding the law’s constitutionality in a 2012 decision,
however, the Supreme Court made Medicaid expansion optional. As a result, many states expanded
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Medicaid after 2014, but several have not done so as of 2024.
Columns 1 and 2 of Table 1 illustrate the variation in Medicaid expansion dates.

Table 1: Medicaid Expansion Under the Affordable Care Act

Expansion Year States Share of States Share of Counties Share of Adults (2013)

Pre-2014 DE, MA, NY, VT 0.08 0.03 0.09
2014 AR, AZ, CA, CO, CT, HI, IA, IL, KY, MD,

MI, MN, ND, NH, NJ, NM, NV, OH, OR,
RI, WA, WV

0.44 0.36 0.45

2015 AK, IN, PA 0.06 0.06 0.06
2016 LA, MT 0.04 0.04 0.02
2019 ME, VA 0.04 0.05 0.03
2020 ID, NE, UT 0.06 0.04 0.02
2021 MO, OK 0.04 0.06 0.03
2023 NC, SD 0.04 0.05 0.03

Non-Expansion AL, FL, GA, KS, MS, SC, TN, TX, WI, WY 0.20 0.31 0.26

Notes: The table shows which states adopted the ACA’s Medicaid expansion in each year as well as the share of all states, counties, and adults in
each expansion year.

States also expanded Medicaid largely because of economic and political considerations (Som-
mers and Epstein, 2013), creating observable differences between expansion and non-expansion
states. For instance, just four out of the 22 states that expanded Medicaid in 2014 are in the
southern Census region compared to seven out of ten non-expansion states. This suggests a po-
tential role for covariates when analyzing Medicaid expansion.

Finally, mortality is measured in jurisdictions like states and counties, which are of very different
sizes. Choices about (population) weights not only determine how different estimation approaches
average the units within a given expansion group but also how a given estimation technique
averages estimated effects across those groups. California, for example, represented 4.5 percent
of the states that expanded Medicaid in 2014, 5 percent of the counties, but 23.1 percent of the
adults ages 20-64; its contribution to “the” average outcome for the 2014 expansion group is very
different with weights than without. The final three columns of Table 1 show that in our data the
entire 2014 expansion group contains 44 percent of the states, 36 percent of the counties, but 45
percent of all adults. Weighting will, therefore, change how important the estimated treatment
effects are for the 2014 group.

Several recent papers study the effect of ACA Medicaid expansion on mortality rates for lower-
income adults who are most likely to gain insurance through Medicaid. Miller, Johnson and Wherry
(2021) and Wyse and Meyer (2024) use simple DiD methods to provide credible evidence that
Medicaid reduced adult mortality rates for targeted sub-populations. Unfortunately, their analyses
require restricted links between income and mortality data, which are important to overcome the
low statistical power in studies using aggregate mortality data (Black, Hollingsworth, Nunes and
Simon, 2022). Our goal is to pursue a replicable and shareable example based on a related analysis
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by Borgschulte and Vogler (2020). They use a sophisticated strategy to select and use covariates in a
weighted TWFE regression using restricted access data, and find that Medicaid expansion reduced
aggregate county-level mortality rates. We use only publicly available data, which allows us to
share a fully-reproducible replication package, and consider only a handful of intuitive demographic
and economic covariates sufficient to illustrate several practical challenges that can arise with DiD.
This empirical exercise is meant solely to illustrate how to tackle several common features of DiD
designs. The results are pedagogical in spirit and do not represent the best possible estimates of
Medicaid’s effect on adult mortality.

Our outcome variable is the crude adult mortality rate, Yi,t, for people ages 20-64 (measured
per 100,000) by county (i) from 2009 to 2019 released by the Centers for Disease Control and
Prevention (2024).3 We denote county i’s adult population in 2013 as Wi and its socioeconomic
covariates in year t (discussed below) as Xi,t. The information in Table 1 defines the treatment
group variable Gi that equals the year in which county i’s state expanded Medicaid with Gi “ 8

for the non-expansion states. Our final sample contains 2,604 counties in states with complete
data on mortality rates from 2009 to 2019 and covariates for 2013 and 2014.

Faced with a setup such as this, researchers need to make a range of tightly related choices.
Which treatment groups in Table 1 should be compared to each other and over what time horizons?
What must be true for those comparisons to identify causal effects, and how should one empirically
evaluate their plausibility? How can other information, such as covariates or pre-period outcomes,
be used to improve the credibility of the design? How do these methodological choices affect the
causal interpretation of a given analysis? The aim of this review is to demonstrate to practitioners
using DiD in realistic scenarios why and how to use state-of-the-art econometric tools to answer
these questions.

3 2ˆ2 DiD designs

We begin our discussion by focusing on the canonical 2ˆ2 DiD setup, which has two time periods—
one before and one after treatment—and two groups—one that remains untreated in both periods
and one that becomes treated in the second period. In our Medicaid example, we focus on com-
parisons between the 2014 expansion group (978 counties) and the non-expansion group as of
2019 (1,222 counties) in 2014 and 2013. When we consider more complex designs, this kind of
comparison will still play a role: it will be one 2 ˆ 2 “building block” among many.

Using these basic ingredients, we can now define a 2ˆ2 DiD design, composed of a causal target
parameter, a treatment variable, an assumption under which it is identified, and an estimation

3It is common to adjust mortality rates by the county age distribution. Unfortunately, the CDC measurements
of age-specific deaths for many counties are restricted due to there being fewer than ten annual deaths. We aim to
use publicly available and shareable data for pedagogical purposes; we follow Borgschulte and Vogler (2020) and
use the crude mortality rate.

5



approach, which will be the classic difference of two differences. This may be familiar territory
in the simple case, but it is a crucial framework for building up appropriate techniques in more
complex cases.

We first define a treatment group dummy Di that equals one for the treated units (expansion
states, Gi “ 2014) and zero for the untreated units (states that had not expanded by 2019,
Gi ą 2019). The treatment status dummy, Di,t “ Di ˆ1tt ě 2014u, then equals one for counties in
2014 expansion states during post-expansion years. To highlight how weights enter different kinds
of DiD analyses, we use the following notation for expected values. For generic random variables
A and C, for a given set of non-negative weights ω, define EωrA|Cs “ ErωA|Cs

L

Erω|Cs as the
ω-weighted population expectation of A given C. When ω “ 1 for all units in the population, we
simply write EωrA|Cs “ ErA|Cs. Henceforth, unless otherwise noted, we assume that we have a
balanced panel data random sample of pYt“1, . . . , Yt“T , G,Xq.

3.1 Causal effects and target parameters: the ATT

The first step of any causal analysis is to define the causal quantity of interest, also called the
target parameter. We use the potential outcomes framework of Rubin (1974) and Robins (1986)
to do so. Let Yi,tp0, 0q denote unit i’s potential outcome at time t if it remained untreated in both
periods. Analogously, let Yi,tp0, 1q denote unit i’s potential outcome at time t if untreated in the
first period but exposed to treatment by the second period. In our example, Yi,tp0, 0q is county i’s
mortality rate in period t in a world in which Medicaid did not expand in its state, and Yi,tp0, 1q is
its mortality rate in a world in which Medicaid did expand in 2014.4 To simplify notation, we will
write Yi,tp0q “ Yi,tp0, 0q and Yi,tp1q “ Yi,tp0, 1q, as the potential outcomes are defined by treatment
exposure in period two (Medicaid expansion status by 2014). Nonetheless, it will be useful for
later discussions that these potential outcomes correspond to treatment sequences.

In practice, we never observe Yi,tp1q and Yi,tp0q for the the same unit. Instead, the data we
observe, Yi,t, are treated outcomes Yi,tp1q for treated units, and untreated outcomes Yi,tp0q for
untreated units, as in the following equation:

Yi,t “ p1 ´ DiqYi,tp0q ` DiYi,tp1q. (3.1)

We additionally assume that county mortality rates were not affected by the Medicaid expansion
before Medicaid expanded, which will be crucial for justifying the structure of the DiD estimator
(see, e.g., Abbring and van den Berg, 2003, Malani and Reif, 2015, and Roth et al., 2023). This
standard “no anticipation” assumption ensures that we observe untreated potential outcomes before
Medicaid expansion takes effect: Yi,2013 “ Yi,2013p0q. It also helps us define effective treatment

4The stable unit treatment value assumption requires that the only treatment determining county i’s mortality
rate is its own. Medicaid expansion in neighboring counties must not affect deaths in county i. Without this
assumption, potential outcomes need to account for many different counterfactuals as they are a function of many
treatment variables.

6



dates. For instance, if the announcement of Medicaid expansion affects mortality before its actual
expansion, “treatment” begins when the policy is announced rather than implemented. We formally
state this assumption for completeness and maintain it throughout the paper.

Assumption NA (No-Anticipation). For all treated units i and all pre-treatment periods t,
Yi,tp1q “ Yi,tp0q.

The potential outcomes define a causal effect for every unit in every time period, Yi,tp1q´Yi,tp0q.
These describe what Medicaid expansion did to mortality rates in a specific treated county or what
it would have done in a specific untreated county. This framework allows for arbitrary heterogeneity
in the effects across units and time, i.e., the effect of Medicaid expansion can be different in every
county and year. But it is hard to learn about this degree of rich heterogeneity without additional
strong restrictions. Instead, DiD analyses typically seek to estimate averages of heterogeneous
treatment effects. In particular, most DiD designs target the average treatment effect on the
treated at time t, or ATT ptq:

ATT ptq “ EωrYi,tp1q ´ Yi,tp0q|Di “ 1s

“ EωrYi,t|Di “ 1s ´ EωrYi,tp0q|Di “ 1s. (3.2)

ATT ptq compares (weighted) average observed post-expansion mortality rates among treated coun-
ties (EωrYi,t|Di “ 1s) to the (weighted) average untreated mortality rates for the same treated
counties (EωrYi,tp0q|Di “ 1s). The second quantity is counterfactual because untreated outcomes
are never observed for treated counties. Note that, by the no-anticipation assumption, ATT ptq “ 0

for all pre-treatment periods, i.e., ATT p2013q “ 0 in our two-period Medicaid example. This en-
sures that cross-group outcome comparisons before treatment begins reflect untreated potential
outcome gaps, which is central to the logic of DiD. Note that we abuse notation and omit the
weight index when defining ATT ’s; we do that to unclutter notation throughout the paper.

Equation (3.2) shows that weighting enters the analysis early on, as part of the definition of the
causal parameter. If interest lies in the average treatment effect of Medicaid on mortality in the
average treated county, sometimes motivated by a view of jurisdictions as “laboratories of democ-
racy” none to be prioritized over another, then the relevant target parameter is an equally weighted
average (ω “ 1). If, on the other hand, the parameter of interest is the average treatment effect
of Medicaid on mortality in the county in which the average treated adult lives, then population
weights are appropriate (ω “ W ). When treatment effect heterogeneity is related to the weights,
weighted and unweighted target parameters differ meaningfully (Solon, Haider and Wooldridge,
2015). We conduct some of our empirical exercises with and without population weights to high-
light how weights affect a given DiD result. From a policy-relevancy perspective, we argue that
using population weights in our Medicaid expansion application is probably more appropriate.

In the Medicaid context, the unweighted ATT p2014q answers the question, “What was the
average causal effect of Medicaid expansion on 2014 mortality rates among the 2014 expansion
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state counties?” Whether this parameter (or any causal parameter) is “of interest” is an argument
about theoretical importance, policy relevance, and how one is planning to use it. Other target
parameters are also possible. Designs other than DiD identify different kinds of average treatment
effects, and some DiD methods use quantile (Athey and Imbens, 2006; Callaway and Li, 2019)
or distribution regression (Fernández-Val, Meier, van Vuuren and Vella, 2024a) approaches to
target features of the marginal distributions of Yi,tp1q and Yi,tp0q among treated units. We focus
on identification and estimation strategies that target ATT parameters but emphasize that the
2 ˆ 2 building block framework applies to DiD methods more broadly; see our appendix for more
discussions about distributional parameters.

3.2 Identifying assumptions: parallel trends

A research design is a strategy—a set of assumptions—to identify and estimate specific target
parameters. Many different assumptions can identify the missing counterfactual for ATT p2014q in
the Medicaid example. For example, mean independence between Yi,2014p0q and Di implies that the
counterfactual equals average 2014 mortality rates in non-expansion counties (EωrYi,2014p0q|Di “

0s). Under this assumption, which essentially entails assuming that Medicaid expansion is as-
good-as random, the cross-sectional mortality gap in 2014 between expansion and non-expansion
counties is the ATT p2014q. Similarly, time invariance of Yi,tp0q among expansion counties (plus the
fact that we ruled out anticipatory behavior) implies that the counterfactual equals 2013 mortality
rates in expansion counties (EωrYi,2013p0q|Di “ 1s). Under this assumption, which essentially rules
out non-treatment-related changes in the outcome variable, the “time trend” in average mortality
in expansion counties is the ATT p2014q.

DiD comes from an alternative assumption that identifies the relevant counterfactual even
when the mean of Yi,t“2p0q differs across treatment groups (which violates mean independence)
and changes over time (which violates time invariance). The so-called parallel trends assumption
states that, in the absence of treatment, the average outcome evolution is the same among treated
and comparison groups.

Assumption PT (2ˆ2 Parallel Trends). The (weighted) average change of Yi,t“2p0q from Yi,t“1p0q

is the same between treated and comparison groups, i.e.,

EωrYi,t“2p0q|Di “ 1s ´ EωrYi,t“1p0q|Di “ 1s “ EωrYi,t“2p0q|Di “ 0s ´ EωrYi,t“1p0q|Di “ 0s. (3.3)

If parallel trends holds, then it is easy to construct EωrYi,t“2p0q|Di “ 1s from observable
quantities—that is, to identify it:

EωrYi,t“2p0q|Di “ 1s “ EωrYi,t“1|Di “ 1s `
`

EωrYi,t“2|Di “ 0s ´ EωrYi,t“1|Di “ 0s
˘

. (3.4)

In the Medicaid example, assumption PT says that to calculate expansion counties’ average 2014
mortality rate in a counterfactual world without Medicaid expansion, start with their average 2013
mortality rate and add the observed change in average mortality rates in non-expansion counties.
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Substituting (3.4) into the definition of ATT p2014q and replacing potential outcomes with observed
outcomes using (3.1) gives the 2ˆ2 DiD estimand, an expression for the target parameter in terms
of four estimable population averages:

ATT p2014q “

“EωrYi,2014p1q|Di“1s
hkkkkkkkkkkikkkkkkkkkkj

EωrYi,2014|Di “ 1s ´

“EωrYi,2014p0q|Di“1s
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

`

EωrYi,2013|Di “ 1s `
`

EωrYi,2014|Di “ 0s ´ EωrYi,2013|Di “ 0s
˘˘

“ pEωrYi,2014|Di “ 1s ´ EωrYi,2013|Di “ 1sq
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

(weighted) average change for Di“1

´ pEωrYi,2014|Di “ 0s ´ EωrYi,2013|Di “ 0sq
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

(weighted) average change for Di“0

.

(3.5)

Equation (3.5) highlights what makes DiD so attractive. It is intuitive, it has very mild data
requirements (just four means), it answers ex post questions like “what did the treatment do?”,
and its identifying assumption can be stated precisely.

Parallel trends makes DiD distinct from causal designs that are based on statistical indepen-
dence between treatment and potential outcomes. In designs like randomized trials or instrumental
variables, the conditions—mean equalities across groups, for instance—that identify counterfactu-
als are often a statistical consequence of the randomness induced externally (Heckman, 2000). In
contrast, parallel trends is just a convenient restriction on untreated potential outcome trends. It
does not necessarily come from exogenous variation “outside the model.” In fact, because treatment
adoption is often chosen by economic actors or policymakers “inside the model”, parallel trends
need not hold automatically. For this reason, DiD analyses (correctly) devote significant attention
to understanding whether parallel trends is plausible in a given application.

We discuss how to generate empirical evidence about the plausibility of parallel trends below,
but new theoretical findings about treatment choice behaviors or selection mechanisms also inform
the plausibility of parallel trends.5 These results explicitly connect DiD to behaviors, they provide
grounding for stories about why a given DiD analysis is plausible (or not), and they discipline
empirical tests of parallel trends. A full review of this literature is outside the scope of this paper,
but some helpful broad themes emerge.6 For instance, a trade-off exists between the information
the agents who choose treatment know and how they act on it, and the time-series properties of
untreated potential outcomes. At one extreme, consider someone who knows Yi,tp0q before and
after treatment and can opt into or out of treatment based on it. Parallel trends can only hold in
this case if, other than common shifts for every unit, Yi,tp0q is constant (Ghanem et al., 2023b). In
our Medicaid example, neither of these conditions—that state legislatures in 2013 knew their 2014
untreated mortality rates or that untreated mortality rates would all have shifted in parallel—
is plausible. The opposite extreme is when treatment timing is random, in which case parallel
trends holds without any time-series restrictions. Yet, in this case, DiD is not necessary, and

5In fact, some of the earliest economic research on DiD methods examined exactly these questions (Ashenfelter
and Card, 1985; Heckman and Robb, 1985).

6For details on selection models and outcome models that are consistent with parallel trends see Ghanem,
Sant’Anna and Wüthrich (2023b); Marx, Tamer and Tang (2024); Chabé-Ferret (2015) applies these arguments to
earnings dynamics.
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more efficient estimators exist (Roth and Sant’Anna, 2023a). Against the political and economic
backdrop of the early 2010s, the claim that state choices about expanding Medicaid were random
is also implausible.

Therefore, in realistic scenarios, parallel trends can only hold under some restrictions on the
way untreated outcomes enter the treatment selection mechanism. As one example, imagine that
treatment selection depends on the permanent component of Yi,tp0q (fixed effects) but not on
shorter-term fluctuations (“shocks”). For instance, if state legislatures only knew and considered
their long-run mortality levels when making their expansion decision, they would be following
this kind of selection mechanism. Expansion and non-expansion states would then have large
differences in the permanent part of untreated outcomes, which difference in equation (3.3), and so
parallel trends would hold if shocks to Yi,tp0q had a stable mean.7 State legislatures, however, may
have also known whether their 2013 mortality rates were especially high or low when considering
expanding Medicaid. If the expansion choice is related to these 2013 mortality shocks as well as
to fixed effect, parallel trends would hold only if one imposes stronger time-series restrictions on
Yi,tp0q. Ghanem et al. (2023b) provides a fuller discussion of the selection/time-series trade-off
and theory-driven templates to assess parallel trends, while Marx et al. (2024) discusses economic
models that are and are not compatible with parallel trends. Another implication of the fact that
DiD does not rely on statistical independence between Yi,tp0q and treatment status is that there is
no guarantee that parallel trends holds across different transformations of Yi,tp0q. As stated, it is
simply an assumption about averages for a particular Yi,tp0q. Roth and Sant’Anna (2023b) show
that parallel trends is insensitive to functional form if and only if it holds between groups and across
the distribution of Yi,tp0q. This would entail assuming that either Medicaid adoption is random,
the mortality distribution is constant between 2013 and 2014, or a mixture of the two cases. As
these conditions are arguably ex-ante restrictive, our DiD analysis may depend on our choices to
measure Yi,t in rates (deaths per 100,000) as opposed to logs, for example. One way to evaluate
this measurement choice is to propose a theory that delivers it, though we recognize that this is
not always possible. To assess whether cases where parallel trends holding for one functional form
come at the cost of ruling other transformations, we recommend that researchers use the Roth and
Sant’Anna (2023b)’s falsification tests for the null that parallel trends are insensitive to functional
form. In our application, we do not reject the null that parallel trends is insensitive to functional
form, with p-values above 0.80.

The interplay between treatment selection and the properties of the outcome variable charac-
terize the structural basis for a DiD analysis (see DiNardo and Lee, 2011) and engaging with them
is essential to any DiD application. While every study will have its own institutions, choices, and
outcomes to consider, a rigorous DiD analysis must provide a transparent discussion about the

7Some researchers may find easier to understand these as “parallel changes” rather than “parallel trends”. How-
ever, the use of “parallel trends” is now firmly established in the literature, and other influential work has used
“changes-in-changes” to refer to an alternative estimator to classical DiD estimation (Athey and Imbens, 2006). To
avoid confusion, we use parallel trends throughout this paper.
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reliability of the underlying identification assumptions. If parallel trends is not plausible, one may
be better off using an alternative research design.

3.3 Estimation and inference: 4 means or one regression?

Mapping the DiD estimand in equation (3.5) to the canonical 2 ˆ 2 DiD estimator follows imme-
diately from replacing population expectations with their sample analogs:

zATT p2014q “ pY ω,D“1,t“2014 ´ Y ω,D“1,t“2013q ´ pY ω,D“0,t“2014 ´ Y ω,D“0,t“2013q, (3.6)

where Y ω,D“g,t“t1 “

řn
i“1 1tDi “ g, t “ t1uωiYi,t1

řn
i“1 ωi1tDi “ g, t “ t1u

is the ω-weighted sample mean of Y for treatment

group g in period t1. Equation (3.6) is the classic difference of two differences written in terms of
sample means. It is a direct recipe for actually estimating ATT ptq and can be read directly from
the following table of average mortality rates in 2013 and 2014 by expansion group.

Table 2: Simple 2 ˆ 2 DiD

Unweighted Averages Weighted Averages

Expansion No Expansion Gap/DiD Expansion No Expansion Gap/DiD

2013 419.2 474.0 -54.8 322.7 376.4 -53.7
2014 428.5 483.1 -54.7 326.5 382.7 -56.2

Trend/DiD 9.3 9.1 0.1 3.7 6.3 -2.6

Notes: This table reports average county-level mortality rates (deaths among adults aged 20-64 per 100,000 adults) in 2013 (row
1) and 2014 (row 2) in states that expanded adult Medicaid eligibility in 2014 (columns 1 and 4) and states that have not ex-
panded by 2019 (columns 2 and 5). The first three columns present unweighted averages and the second three columns present
population-weighted averages. Columns 1, 2, 4, and 5 in the third row show time trends in mortality between 2013 and 2014 for
each group of states. The first two rows of columns 3 and 6 show the cross-sectional gap in mortality between expansion and
non-expansion states in 2013 and 2014. The entries in bold red text in row 3 show the simple 2 ˆ 2 difference-in-differences esti-
mates without weights (column 3) and with them (column 6)

The two across-time changes in equation (3.6) are in the third row of the table. Without
weighting, average county-level mortality rates in expansion states rose by 9.3 deaths per 100,000
and 9.1 deaths in non-expansion states, so, after rounding, the DiD estimate of ATT p2014q is
0.1 deaths per 100,000, implying that the average treatment effect of Medicaid expansion had
on mortality in 2014 among counties that are part of an expansion state was an increase of 0.1
deaths per 100,000. In contrast, the DiD result using population weights suggests that Medicaid
expansion caused a reduction of 2.6 deaths per 100,000 for the average adult in expansion states.8

The same result can be obtained as the (weighted) least squares estimate of β2ˆ2 in the following
linear regression specification (that only has data for t “ 2013 and t “ 2014):

Yi,t “ β0 ` β11tDi “ 1u ` β21tt “ 2014u ` β2ˆ2
p1tDi “ 1u ˆ 1tt “ 2014uq ` εi,t, (3.7)

8Columns 3 and 6 show cross-group gaps in average mortality in each year. These can also be used to construct
the DiD estimate by rearranging equation (3.6): pY D“1,t“2014 ´ Y D“0,t“2014q ´ pY D“1,t“2013 ´ Y D“0,t“2013q.
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where β’s are unknown coefficients, εi,t is an idiosyncratic term uncorrelated with Di. To see why,
let’s focus on the unweighted case (ωi “ 1), and write each of the four means in zATT p2q in terms
of the estimated coefficients from (3.7):

– Sample average of Yi,t in post period for treatment group: Y D“1,t“2014 “ pβ0 ` pβ1 ` pβ2 ` pβ2ˆ2.

– Sample average of Yi,t in pre period for treatment group is Y D“1,t“2013 “ pβ0 ` pβ1.

– Sample average of Yi,t in post period for comparison group is Y D“0,t“2014 “ pβ0 ` pβ2.

– Sample average of Yi,t in pre period for comparison group is Y D“0,t“2013 “ pβ0.

Substituting these expressions into the definition of zATT p2q yields:

zATT p2014q “

„

p pβ0 ` pβ1 ` pβ2 ` pβ2ˆ2
q ´ p pβ0 ` pβ1q

ȷ

´

„

p pβ0 ` pβ2q ´ pβ0

ȷ

“ pβ2ˆ2.

Table 3 demonstrates this equivalence for both unweighted (column 1) and weighted (column 4)
regressions. In fact, with balanced panel data, the estimate of β2ˆ2 is numerically the same if the
regression instead contains fixed effects for each unit (columns 2 and 5) or if one regresses outcome
changes on a constant and the treatment group dummy Di (columns 3 and 6).9

Table 3: Regression 2 ˆ 2 DiD

Unweighted Weighted
Crude Mortality Rate ∆ Crude Mortality Rate ∆

(1) (2) (3) (4) (5) (6)
Constant 474.0˚˚˚ 9.1˚˚˚ 376.4˚˚˚ 6.3˚˚˚

(4.3) (2.6) (7.6) (1.1)
Medicaid Expansion -54.8˚˚˚ -53.7˚˚˚

(6.3) (11.5)
Post 9.1˚˚˚ 6.3˚˚˚

(2.6) (1.1)
Medicaid Expansion ˆ Post 0.1 0.1 0.1 -2.6˚ -2.6˚ -2.6˚

(3.7) (3.7) (3.7) (1.5) (1.5) (1.5)
County fixed effects No Yes No No Yes No
Year fixed effects No Yes No No Yes No

Notes: This table reports the regression 2 ˆ 2 DiD estimate comparing counties that expand Medicaid in 2014
to counties that do not expand Medicaid by 2019, using only data for the years 2013 and 2014. Columns 1-3 re-
port unweighted regression results, while columns 4-6 weight by county population aged 20-64 in 2013. Columns
1 and 4 report results from regressing the crude mortality rate for adults ages 20-64 on indicators for expansion
states (Treat) and post-expansion year (Post), with the DiD estimate being the coefficient on the interaction
term. Columns 2 and 5 report the corresponding results for the interaction term using county and year fixed ef-
fects. Finally, Columns 3 and 6 report the results of the long difference in county mortality rates on a treatment
indicator. Standard errors (in parentheses) are clustered at the county level.

The equivalence between calculating a 2 ˆ 2 DiD by hand or with a regression has appealing
features. Regressions are simple to run, and they do the averaging and differencing behind the
scenes. They also allow the use of statistical inference tools from ordinary least squares (OLS),

9When population weights vary over time the equivalence between a by-hand DiD estimate and one that comes
from a regression with unit fixed effects no longer holds.
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which are themselves the subject of a large econometrics literature that is particularly important
when it comes to clustering decisions (Wooldridge, 2003; Bertrand, Duflo and Mullainathan, 2004;
Donald and Lang, 2007; Cameron, Gelbach and Miller, 2008; Conley and Taber, 2011; Abadie,
Athey, Imbens and Wooldridge, 2020, 2023).

Many inference procedures exist for DiD-type analyses, arising from a combination of choices
about the target parameter, details of the data structure and sampling process, and maintained
assumptions about the structure of outcomes. In practice, one needs to determine and discuss the
forms of uncertainty the standard errors are designed to capture; that is, what is (conceptually)
being resampled and what may or may not vary across those resamples. As discussed in Abadie
et al. (2020), these details come from the nature of the parameter of interest—whether the focus
is on sample-specific average treatment effects or population-level average treatment effects—and
the stochastic elements of the model that make the estimator random. Heuristically, this involves
a thought experiment (or stochastic process) hypothesized to generate the random components
of the model (or the data-generating process). Different inferential frameworks highlight different
sources of uncertainty by resampling distinct model components and treating other components
as fixed (non-random).

Inferential frameworks on two extremes help cement these concepts. Design-based frameworks
treat potential outcomes and covariates as non-random, focus on finite-population parameters (e.g.,
sample average treatment effects), and consider the allocation of treatment as the only source of
the randomness in the model (Imbens and Rubin, 2015).10 The only thing that is random and thus
varies across the hypothetical resamples from this point of view is the treatment allocation. On the
other hand, a traditional sampling-based approach to inference presumes that we independently
sample units from a superpopulation. In this case, it is customary to focus on population param-
eters (like ATT p2q), treat all variables in the model as random variables, and cluster standard
errors at the level in which the (hypothesized) sampling was conducted. In this framework, every
variable in the analysis—outcomes, covariates, and treatment—is randomly redrawn across the
hypothetical resamples. A drawback of the sampling approach is that sometimes, it is unnatural
to think of the data as a random sample from a well-defined population.

A third popular approach to inference—the model-based approach—is more structural and
involves taking a stand on the structure of the error component of the model (e.g., imposing a
putative model for how shocks affect outcomes and their relationship with treatment and other
variables in the model). The uncertainty reflected in this model-based setting entails a thought
experiment in which different values of these shocks and the other random variables in the model
are drawn from their joint distribution (Abadie et al., 2023). This model-based approach is common
in econometrics, and it almost always takes the linear regression specification (or model, in this

10Traditionally, design-based inference procedures are justified when treatment assignment is fully random, which
is a much stronger requirement than parallel trends. See Rambachan and Roth (2024) for a discussion on design-
based inference for quasi-experimental designs, including a discussion of the Medicaid expansion.
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case) as the starting point of the analysis. Albeit this is often convenient, it is important to
note that imposing model restrictions on the error component of the model necessarily imposes
restrictions on treatment effect heterogeneity and on the relationship between potential outcomes;
see Section 5 and Appendix A of Roth et al. (2023) for a discussion. Another challenge with the
model-based approach is that it is hard to use this framework when adopting estimation strategies
other than linear regressions, e.g., inverse probability weighting or doubly robust procedures that
we will discuss in Session 4.4.

Ultimately, as the discussion above highlights, each approach has pros and cons, and discussions
about the best way to compute standard errors are complex and often ambiguous. As such, a
detailed treatment of the topic is outside the scope of this paper. We emphasize that such a
discussion is intrinsically context-specific, requiring information about the sampling process, the
research design and target parameters, what is treated as fixed and random, and the structure of
the error components of their models, among other factors. We refer interested readers to Abadie
et al. (2020, 2023) and Section 5 of Roth et al. (2023) for discussions on these topics, though we
also emphasize that further methodological research in this area is warranted. For the remainder
of this article, we adopt a sampling perspective for uncertainty and cluster our standard errors
at the county level. In our context, this is compatible with treating all variables as random,
including treatment groups and potential outcomes. It also allows us to avoid (a) making time-
series dependence restrictions on potential (and realized) outcomes—as we are in a short-panel
framework with a large number of units and a fixed number of time periods—and (b) taking an
explicit strand on the structure of error components of the model, which is particularly appealing
as the starting point of our analysis are potential outcomes and not regression models. It is also
worth mentioning that as our treatment in the empirical example is assigned at the state level,
clustering at the county level would also be compatible with treating state-specific shocks as fixed
(or conditioned on) and assessing if they lead to violations of parallel trends (Roth et al., 2023,
Section 5.1). Clustering at the state level would be justified using a design-based perspective
(Rambachan and Roth, 2024), though that would require us to treat potential outcomes as fixed
(which we do not in this paper). Our choice of inference procedure is not without controversies,
and other inferential approaches may also be rationalized under additional auxiliary structures.
However, we do not follow that path in this paper.

We conclude this section by stressing that the appeal of using regressions like (3.7) to estimate
ATT in DiD designs comes from the fact that it is numerically equivalent to the “by-hand” DiD
estimator (3.6), which was explicitly derived from the ATT ptq and the parallel trends assumption.
This ensures that the regression specification respects the underlying identifying assumptions and
estimates the desired target parameter. Unfortunately, the tight connection between (TWFE)
regressions and DiD designs breaks under more complex setups that are ubiquitous in practice.
We now turn to some of these issues and how approaching them from the point of view of 2 ˆ 2

building blocks can guide good econometric practices.
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4 Incorporating covariates into 2ˆ2 DiD

So far, we have focused on 2ˆ2 DiD designs that do not leverage any information about covariates,
but researchers frequently incorporate them into DiD analyses in one of three ways: checking
for balance in variables thought to influence Yi,tp0q, controlling for those variables in the main
estimates, and estimating treatment effect heterogeneity. For example, in the absence of Medicaid
expansion, mortality rates likely would have evolved differently in poorer and richer counties and
certainly did prior to 2014 (Currie and Schwandt, 2016). Therefore, parallel trends may not be
plausible if poverty rates differ between expansion and non-expansion counties. If they do, then
one may want to “control for” poverty rates when estimating ATT parameters. Finally, because
Medicaid expansion reached more people in higher-poverty counties, its average effects on overall
mortality may be larger there. This heterogeneity may be of interest in its own right or may be
used to assess the plausibility of the overall DiD design.

This section discusses how to use auxiliary information on covariates to evaluate parallel trends,
identify ATT parameters under potentially weaker assumptions, and study heterogeneity. These
approaches stem from viewing a DiD with covariates in terms of 2 ˆ 2 building blocks that them-
selves condition on those variables, which creates a clear link to the assumptions, estimators, and
interpretation of unconditional 2 ˆ 2 designs. We also discuss how regression estimators that
control for covariates impose extra assumptions and can fail to identify ATT parameters.

4.1 Covariate balance: Is unconditional parallel trends plausible?

Assumption PT is fundamentally untestable, as it contains an unobserved counterfactual compo-
nent. Therefore, “tests” of these assumptions are necessarily indirect and rely on other observed
variables thought to be related to untreated potential outcome trends. For example, during the
2010s, area-level demographics and economic conditions were strongly correlated with mortality
levels and trends. If these relationships would have held in the absence of Medicaid expansion,
and if expansion and non-expansion counties differ in those demographic and economic character-
istics, then the parallel trends assumption (3.3) may fail to hold. Checking balance in observable
determinants of changes in Yi,tp0q is thus a common and sensible way to evaluate parallel trends.

Most DiD analyses check for balance across groups in baseline covariate levels (EωrXi,t“1|Di “

1s ´ EωrXi,t“1|Di “ 0s) or covariate trends before and after treatment (Eωr∆Xi,t“2|Di “ 1s ´

Eωr∆Xi,t“2|Di “ 0s, where ∆Xi,t“2 “ Xi,t“2 ´ Xi,t“1). We consider the following variables, Xi,t:
the percentages of a county’s population that are female, white, or Hispanic; the unemployment
rate; the poverty rate; and county-level median income (in thousands of dollars).11 Panel A of Table
4 reports averages of these variables by group in 2013 with and without population weights. We

11We focus on these variables for convenience. Borgschulte and Vogler (2020) use a LASSO procedure that
selects more and different covariates to include in their analysis. We replicate their findings when we follow their
methodology but diverge here for the sake of brevity.
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also report a measure of imbalance that is comparable across variables: the normalized difference
in means between treatment and comparison group (Imbens and Rubin, 2015, Chapter 14),

Norm. Diffω “
Xω,T ´ Xω,C

b

pS2
ω,T ` S2

ω,Cq{2

where Xω,T and Xω,C are the sample weighted or unweighted averages for the treatment and com-
parison groups, respectively, and S2

ω,T and S2
ω,C are the sample weighted or unweighted variances

of the covariates for the treatment and comparison group. As a general rule of thumb, values
of the normalized difference in excess of 0.25 in absolute value indicate a potentially problematic
imbalance between the two groups (Imbens and Rubin, 2015, page 277).

Table 4: Covariate Balance Statistics

Unweighted Weighted

Variable Non-Adopt Adopt Norm. Diff. Non-Adopt Adopt Norm. Diff.

2013 Covariate Levels
% Female 49.43 49.33 -0.03 50.48 50.07 -0.24
% White 81.64 90.48 0.59 77.91 79.54 0.11
% Hispanic 9.64 8.23 -0.10 17.01 18.86 0.11
Unemployment Rate 7.61 8.01 0.16 7.00 8.01 0.50
Poverty Rate 19.28 16.53 -0.42 17.24 15.29 -0.37
Median Income 43.04 47.97 0.43 49.31 57.86 0.68

2014 - 2013 Covariate Differences
% Female -0.02 -0.02 0.00 0.02 0.01 -0.09
% White -0.21 -0.21 0.01 -0.32 -0.33 -0.04
% Hispanic 0.20 0.21 0.04 0.25 0.33 0.29
Unemployment Rate -1.16 -1.30 -0.21 -1.08 -1.36 -0.55
Poverty Rate -0.55 -0.28 0.14 -0.41 -0.35 0.05
Median Income 0.98 1.11 0.06 1.10 1.74 0.32

Notes: This table reports the covariate balance between adopting and non-adopting states. In the top panel, we report the averages
and standardized differences of each variable, measured in 2013, by adoption status. All variables are measured in percentage values,
except for median household income, which is measured in thousands of U.S. dollars. In the bottom panel we report the average and
standardized differences of the county-level long differences between 2014 and 2013 of each variable. We report both weighted and
unweighted measures of the averages to correspond to the different estimation methods of including covariates in a 2 ˆ 2 setting.

We find meaningful imbalance in several baseline measures. Expansion counties in 2013 were
whiter and had a higher unemployment rate despite lower poverty and higher median income than
non-expansion counties. Because DiD uses changes in outcomes, sometimes researchers argue that
the effect of pre-treatment variables is differenced out. This logic does not hold, though, if baseline
covariates are related to untreated potential outcome trends themselves. The imbalance in panel
A of Table 4 will lead to violations of parallel trends to the extent that counties starting out with
different racial composition or income distributions would have had different mortality trends even
absent Medicaid expansion.
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Nevertheless, balance in covariate changes can be informative about parallel trends as well.
Panel B of Table 4 reports average changes by group between 2013 and 2014 as well as normalized
differences. Many of the imbalances evident in baseline levels change, or even flip signs, when
measured in changes. Unemployment, for example, was higher in expansion states in 2013 but fell
faster. To the extent that these changes are important determinants of ∆Yi,tp0q, then these results
could suggest that Assumption PT is violated.

Why do we say “could”? A major challenge in interpreting cross-group gaps in ∆Xi,t involves
deciding which variables are truly covariates and which are mechanisms/outcomes. If an element
of Xi,t cannot be affected by the treatment, it is a (strictly exogenous) covariate, and differential
changes in exogenous covariates may indicate a PT violation. Since the treatment cannot have
caused Xi,t to change (by assumption), something else that differs across groups and over time
must have. Since little research suggests an effect of Medicaid expansion on unemployment, this
may be a good assumption. On the other hand, if Medicaid expansion can change the demographic
and economic composition of its counties, then differential changes in these variables may actually
be a consequence of the expansion itself.12 If so, then differential post-treatment changes in them
would not necessarily indicate a parallel trends violation; they could partially reflect a causal effect.
Like the plausibility of Assumption PT itself, whether something is a covariate or a mechanism
is not a data question per se. It requires context-specific knowledge (or assumptions) about how
treatment works.

4.2 DiD with covariates: Identification under conditional parallel trends

Having detected covariate imbalance that casts doubt on Assumption PT, how should we proceed
to estimate ATT p2q? Because the imbalance documented in Table 4 suggested that unconditional
parallel trends may not hold, our goal is to develop a DiD identification strategy based on an
assumption that accounts for this imbalance. Working from a conditional parallel trends assump-
tion shows how to construct ATT p2q from 2ˆ 2 comparisons that are each conditioned on specific
covariate values, thus addressing the imbalance problem.

Let Xi be a vector of observed determinants of changes in Yi,tp0q. Here, we purposefully omit
the time subscript on Xi because the covariates in this section can be time-invariant, such as fixed
variations or baseline values (Xi,t“1), or time-varying in the sense of including values from in the
second period, Xi,t“2. The empirical content of a “new” identification assumption that incorporates
Xi, henceforth conditional parallel trends (CPT) assumption, is formalized as follows.

Assumption CPT (2ˆ2 Conditional Parallel Trends). The (weighted) average change of Yi,t“2p0q

from Yi,t“1p0q is the same between treated and comparison units that share the same covariate

12In fact, comparing mean covariate changes in expansion and non-expansion is the same as using Xi,t as the
outcome in a 2 ˆ 2 DiD estimator.
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values,

EωrYi,t“2p0q ´ Yi,t“1p0q|Xi, Di “ 1s “ EωrYi,t“2p0q ´ Yi,t“1p0q|Xi, Di “ 0s. (4.1)

Assumption CPT has the same structure as Assumption PT but states that PT holds within
each covariate-specific stratum rather than across the whole population. With respect to the
baseline covariates in Table 4, this assumption amounts to assuming parallel trends in Yi,tp0q

between expansion and non-expansion counties with the same female, white, and Hispanic shares
as well as unemployment and poverty rates, and median income in 2013. This does not restrict how
Yi,tp0q changes in different covariate strata, and it is not necessary to specify or estimate whether
mortality rates would have gone up or down for counties with specific characteristics. It only
imposes that these covariate-specific trends are common between expansion and non-expansion
counties.

For both expectations in Assumption CPT to be well-defined for all values of Xi, there must be
both untreated and treated units in the population at each covariate value. If, for some covariate
values, there are only treated units, for example, then the right-hand side of (4.1) is undefined. A
formal statement of this assumption, called common support or strong overlap, is as follows.13

Assumption SO (Strong overlap). The conditional (weighted) probability of belonging to the
treatment group, given observed covariates Xi that are determinants of untreated potential
outcome growth, is uniformly bounded away from zero and one. That is, for some ϵ ą 0,
ϵ ă PωrDi “ 1|Xis ă 1 ´ ϵ.

Assumptions CPT and SO allow us to identify the ATT p2q:

ATT p2q “ EωrYi,t“2p1q|Di “ 1s ´ EωrYi,t“2p0q|Di “ 1s

“ EωrYi,t“2|Di “ 1s ´ Eω

”

EωrYi,t“2p0q|Xi, Di “ 1s

ˇ

ˇ

ˇ
Di “ 1

ı

“ EωrYi,t“2|Di “ 1
ı

´ Eω

”

EωrYi,t“1p0q|Xi, Di “ 1s ` Eωr∆Yi,t“2p0q|Xi, Di “ 0s

ˇ

ˇ

ˇ
Di “ 1

ı

“ Eωr∆Yi,t“2|Di “ 1
ı

´ Eω

”

Eωr∆Yi,t“2|Xi, Di “ 0s

ˇ

ˇ

ˇ
Di “ 1

ı

(4.2)

The first line restates the definition of ATT p2q, and the second line uses the law of iterated
expectations to write the counterfactual mean for the whole treatment group as an average of
counterfactual means conditional on Xi. These quantities are exactly the ones that appear in
the conditional parallel trends assumption (and the overlap condition). Therefore, just like in
section 3, the third line uses Assumption CPT to rewrite the conditional counterfactuals in terms
of observable population quantities (under Assumption NA). Equation (4.2) then uses the law of
iterated expectations again to group terms and express the ATT p2q in terms of observed variables
pYi,t“2, Yi,t“1, Gi, Xiq, i.e., it establishes that ATT p2q is nonparametrically identified under our

13ATT p2q is still identified under conditional parallel trends if some values of Xi only have untreated observations.
We require propensity scores to be bounded away from zero and one to avoid irregular inference procedures; see
Khan and Tamer (2010) for additional details.

18



assumptions. This expression has a clear intuition: the ATT p2q is equal to the path of outcomes
experienced by the treated group (the term on the left) minus the average path of outcomes in the
comparison group for each value of the covariates, averaged over the treated group’s distribution
of covariates (the term on the right).

4.3 DiD estimation with covariates: TWFE

Unlike in an unconditional DiD, moving from the population identification result in equation (4.2)
to sample analogs is a challenge unless the covariates are discrete and the conditional expectations
themselves are easily calculable. With continuous covariates, or many discrete ones, it may not be
feasible to construct Eωr∆Yi,t“2|Xi, Di “ 0s. Conditional DiD estimation, therefore, uses additional
econometric techniques to bridge this gap. We begin, however, by discussing how regression DiD
estimators that include covariates relate to the assumptions used for identification in (4.2).

Because the TWFE specification in (3.7) recovers the ATT p2q in 2 ˆ 2 DiD setups without
covariates, it is natural to extend this logic to regressions with covariates. Indeed, this is by far
the most popular approach adopted by practitioners arguably because it is both easy and familiar.
A typical regression specification is

Yi,t “ θt ` ηi ` βtreatDi,t ` X 1
i,tβcovs ` ei,t, (4.3)

where the unit and time fixed effects, treatment status, and covariates have already been defined,
ei,t is an error term, and βtreat is interpreted as the parameter of interest. A related specification
explicitly controls for baseline covariates by replacing Xi,t with interactions of the pre-treatment
covariates and a post-treatment dummy,

Yi,t “ θt ` ηi ` βtreat,2Di,t ` p1tt “ 2uXi,t“1qβcovs,2 ` ei,t, (4.4)

In Table 5, we report the OLS and weighted least squares estimates of the unconditional 2 ˆ 2

DiD estimate, βcovs from (4.4), βcovs,2, from (4.3), and their cluster-robust standard errors using
the covariates from Table 4.

Table 5: Regression 2 ˆ 2 DiD with Covariates

Unweighted Weighted

No Covs Xi,t“2013 Xi,t No Covs Xi,t“2013 Xi,t

(1) (2) (3) (4) (5) (6)

Medicaid Expansion 0.12 -2.35 -0.49 -2.56˚ -2.56 -1.37
(3.75) (4.29) (3.83) (1.49) (1.78) (1.62)

Notes: This table reports the regression 2 ˆ 2 DiD estimate comparing counties that expand Medicaid in 2014
to counties that do not expand Medicaid, adjusting for the inclusion of covariates (percent female, percent white,
percent hispanic, the unemployment rate, the poverty rate, and median household income). Columns 1-3 report
unweighted regression results, while columns 4-6 weight by county population aged 20-64 in 2013. Columns 1
and 4 report results for expansion states without covariates, columns 2 and 5 adjust for the baseline levels of the
covariates in 2013, and columns 3 and 6 control for the time-varying covariate values in 2014 and 2013. Standard
errors (in parentheses) are clustered at the county level.
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Although only one covariate-adjusted estimate in Table 5 is (marginally) statistically significant,
the point estimates differ noticeably. In the unweighted case, adjusting for the 2013 levels of the
covariates decreases the estimated effect of Medicaid expansion on short-run mortality rates from
a point estimate of roughly 0.12 to -2.35. However, if we include their time-varying values instead,
we estimate an effect of -0.49, a large difference. We find a similar result when using weighted
regressions; while the coefficient remains fairly constant (-2.56) when using 2013 values of the
covariates, it attenuates to -1.37 if we use (4.3).

The jump from the conditional DiD identification result in (4.2) to the TWFE estimators in
(4.3) and (4.4) skips a crucial question about βtreat or βtreat,2: do they equal the target parameter
ATT p2q under the conditional parallel trends assumption? It turns out that the close relationship
between regression DiD, ATT p2q, and parallel trends in a design without covariates does not
hold with covariates. The issues come from exactly what kinds of covariates are effectively being
“controlled for” in these specifications and how the regression estimator combines outcome trends
for covariate sub-groups.

Note that in our two-period setup, (4.3) and (4.4) are respectively equivalent to (with some
abuse of notation),

∆Yi,t“2 “ α ` βtreatDi ` ∆X 1
i,t“2βcovs ` ∆ei,t“2,

∆Yi,t“2 “ α ` βtreat,2Di ` X 1
i,t“1βcovs,2 ` ∆ei,t“2.

The first thing that is clear from these representations is that because time-invariant variables
drop out of equation (4.3), a TWFE specification can only account for differential trends related
to baseline covariate levels if they enter as interactions with the post-treatment dummy as in equa-
tion (4.4). The exact regression specification, therefore, determines the implied conditional par-
allel trends assumption. Controlling for annual poverty rates really means controlling for poverty
changes, and areas that are poor are not the same as areas that are becoming poor.

Another limitation evident in (4.3) relates to “bad controls.” Whenever Xi,t“2 is affected by
the treatment, then conditioning on it (in any way) can bias estimates of the ATT p2q. If Medicaid
expansion lowered poverty rates, for example, then including 2014 poverty rates or the 2013-2014
change in poverty rates as a covariate is problematic. This echoes our discussion about testing
balance in ∆Xi,t in the sense that time-varying covariates must be unaffected by treatment in
order to interpret imbalance in their trends as a source of bias, and to be able to control for them
to address that bias. See Caetano, Callaway, Payne and Rodrigues (2022) for a discussion.

Suppose we have decided on which variables to include in a conditional parallel trends assump-
tion and whether to measure them in levels or changes. If Assumptions CPT and SO hold with
respect to this set of covariates, does βtreat recover the ATT p2q? In the DiD context, Caetano and
Callaway (2024) tackles exactly this question. They show that βtreat equals a weighted average of
conditional average treatment effects, defined as ATTxk

p2q ” Eω

“

Yi,t“2p1q ´ Yi,t“2p0q|Di “ 1, Xi “

xk

‰

, with weights that may not be convex, plus three bias terms reflecting misspecification either
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in the set of control variables or the fact that they are included linearly. These conclusions relate
to recent findings about the properties of regression estimators in the presence of heterogeneity in
other contexts, including instrumental variables (Mogstad and Torgovitsky, 2024), cross-sectional
designs (Angrist, 1998; Aronow and Samii, 2015; Sloczynski, 2022; Goldsmith-Pinkham, Hull and
Kolesár, 2024), and panel data (Goodman-Bacon, 2021; de Chaisemartin and D’Haultfoeuille, 2020;
Sun and Abraham, 2021; Poirier and Sloczynski, 2024).

The weighting results suggest that even when the covariates are correctly selected, measured,
and added with the correct functional form, βtreat could be negative even when ATTXi

p2q is positive
for all values of covariates. Short of this extreme sign-reversal case, βtreat’s weighting scheme gen-
erally does not yield the ATT p2q target parameter and instead puts too much weight on ATTXi

p2q

for Xi’s that are relatively uncommon among the treated group relative to the untreated group
and puts too little weight on ATTXi

p2q for Xi’s that are relatively common among the treated
group relative to the untreated group (Sloczynski, 2022, Caetano and Callaway, 2024).

Taken together, these results imply that βtreat identifies ATT p2q under the additional assump-
tion that treatment effects across covariate strata are constant. To see why, write the conditional
ATT in period two given ∆Xi,t“2 as

ATT∆Xi,t“2
p2q “ EωrYi,t“2p1q ´ Yi,t“2p0q|Di “ 1,∆Xi,t“2s,

and note that, under Assumptions CPT and SO, it is identified by

ATT∆Xi,t“2
p2q “ Eωr∆Yi,t“2|Di “ 1,∆Xi,t“2s ´ Eωr∆Yi,t“2|Di “ 0,∆Xi,t“2s.

If we take (4.3) to be a correctly specified regression, then

ATT∆Xi,t“2
p2q “

`

βtreat ` ∆X 1
i,t“2βcovs

˘

´
`

∆X 1
i,t“2βcovs

˘

“ βtreat.

In other words, (4.3) implicitly rules out that treatment effects can vary across covariate-strata,
which makes the weighting issues identified by Caetano and Callaway (2024) irrelevant to the
interpretation of βtreat. Research on the Medicaid expansion using data on mortality rates by
income shows clear evidence of heterogeneous effects (Miller et al., 2021; Wyse and Meyer, 2024),
making this implicit restriction implausible.

One way to avoid these limitations would be to make (4.4) (or (4.3)) more flexible by includ-
ing interactions of the covariates with treatment group, time, and treatment-group-by-time. An
alternative possibility is to adopt a “forward-engineering” perspective (Mogstad and Torgovitsky,
2024) and derive an estimator for ATT p2q that directly leverages Assumptions NA, CPT and SO.
In some situations, the forward-engineering approach will also use regressions. Still, the target
parameter and the identifying assumptions will guide the specification we should use (and not the
other way around).

As discussed in the introduction, we believe forward-engineering with DiD provides clear ben-
efits compared to the more standard reverse-engineering approach that fixes the econometric tool
and a regression specification (e.g., TWFE) and tries to back out a reasonable (weakly) causal inter-
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pretation of the regression coefficient in the presence of unmodelled treatment effect heterogeneity
that leads to model misspecification. When using the forward-engineering approach, changes in the
estimation procedures lead to changes in estimates, but we know exactly what is being estimated
and under which assumptions. In this sense, and contrary to the reverse-engineering approach, it
does not move the goalpost, leading to a more transparent analysis, with less ambiguity about the
identification assumptions and the interpretations of the parameters. A drawback is that one may
need to learn and use new econometric techniques, though we view this as a minor step compared
to its potential benefits.

We now turn to estimators that take this forward-engineering approach, which we will also
adapt to DiD designs that are more complex than the 2 ˆ 2 setup heretofore discussed.

4.4 DiD estimators with covariates that target the ATT(2)

Fortunately, TWFE is not the only way to bring covariates into DiD estimation. Alternative
strategies start from the identification result in (4.2):

ATT p2q “ Eωr∆Yi,t“2|Di “ 1s ´ Eω

”

Eωr∆Yi,t“2|Xi, Di “ 0s

ˇ

ˇ

ˇ
Di “ 1

ı

.

This equation provides an intuitive recipe for estimating ATT p2q. The first term in ATT p2q is the
same as in an unconditional 2 ˆ 2 design and can be replaced by its sample analog as in equation
(3.6): pY ω,D“1,t“2 ´ Y ω,D“1,t“1q.

One way to obtain the second term is to first estimate the inner conditional expectation,
Eωr∆Yi,t“2|Xi, Di “ 0s. This object is just an (unknown) function that relates average outcome
trends for untreated units to their covariates. The most common way to proceed, especially
in cases where Xi contains many variables or continuous ones, is to specify a working model,
µω,∆,D“0pXiq, with parameters that are simple to estimate. A natural and empirically friendly
choice is a linear model, µω,∆,D“0pXiq “ X 1

iβD“0 whose parameters come from a (weighted) re-
gression of ∆Yi,t“2 on Xi in the sample of untreated units. The results of this regression describe
untreated outcome trends as a function of Xi. The fitted model then generates predicted val-
ues, pµω,∆,D“0pXiq “ X 1

i
pβD“0, for all units in the sample, including treated units. With these

fitted values we can estimate Eω

”

Eωr∆Yi,t“2|Xi, Di “ 0s

ˇ

ˇ

ˇ
Di “ 1

ı

using the plug-in principle, i.e.,
by replacing Eωr∆Yi,t“2|Xi, Di “ 0s with its fitted value pµω,∆,D“0pXiq, and replacing population
(weighted) expectations with their sample analogs:

řn
i“1 Di ωi pµω,∆,D“0pXiq

řn
i“1 Di ωi

.
Putting the pieces together gives the following estimator for ATT p2q

zATT rap2q “

řn
i“1Di ωi

`

∆Yi,t“2 ´ pµω,∆,D“0pXiq
˘

řn
i“1Di ωi

. (4.5)

This strategy is often referred to as the regression-adjustment (RA) or outcome regression approach
to DiD, see, e.g., Heckman, Ichimura and Todd (1997a).

We apply this strategy in our application using only the baseline covariates from Table 4 and
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report the parameters pβD“0 of our working model in columns (1) and (3) of Table 6. In practice,
mortality changes in non-expansion states are only weakly related to our baseline covariates. Mul-
tiplying the weighted coefficients in Table 6 times the weighted treatment group 2013 means in
Table 4 gives a predicted change in untreated mortality rates for the average treated county of 7.2
deaths per 100,000, the second term in equation (4.5). A fit this close to the observed (weighted)
change of 6.3 deaths indicates the poor fit of our outcome model. The observed weighted trend
in mortality for expansion counties from Table 2 is 3.7 deaths. Together, these imply that this
approach, based only on assumptions CPT, SO, NA, the choice of baseline covariates, and a linear
model for Eωr∆Yi,t“2|Xi, Di “ 0s, yields an estimated ATT p2014q of -3.5. This matches the formal
RA DiD estimate we report in column 4 of Table 7 (labeled as “Regression”). Column 1, however,
gives an unweighted estimate from the same procedure of -1.62.

Table 6: Outcome Regression and Propensity Score Models

Unweighted Weighted

Regression Propensity Score Regression Propensity Score

(1) (2) (3) (4)
OLS Logit OLS Logit

Constant -20.91 -10.00˚˚˚ -4.62 -8.17˚˚˚

(69.85) (1.35) (44.98) (0.01)
% Female 0.04 -0.04˚˚ -0.09 -0.19˚˚˚

(0.82) (0.02) (0.68) (0.00)
% White 0.15 0.06˚˚˚ 0.20˚ 0.04˚˚˚

(0.22) (0.00) (0.11) (0.00)
% Hispanic -0.08 -0.02˚˚˚ -0.08 -0.02˚˚˚

(0.20) (0.00) (0.08) (0.00)
Unemployment Rate 1.14 0.32˚˚˚ 0.88 0.68˚˚˚

(1.56) (0.03) (0.99) (0.00)
Poverty Rate 0.21 0.03˚ -0.13 0.11˚˚˚

(0.98) (0.02) (0.53) (0.00)
Median Income 0.09 0.08˚˚˚ -0.05 0.15˚˚˚

(0.52) (0.01) (0.24) (0.00)
Notes: This table reports the outcome regression propensity score models that enter into the estimator from
Sant’Anna and Zhao (2020) and Callaway and Sant’Anna (2021). The first two columns report the results for
unweighted regressions and the second two report results from weighted regression models. The regression model
predicts changes in the outcome variable (mortality rates) on the 2013 covariate values for just the counties that
do not expand Medicaid in 2014. The propensity score model uses data for 2013 and estimates a logit model of
an expansion indicator variable on the 2013 covariate levels. Standard errors (in parentheses) are clustered at
the county level.

To compute standard errors, we need to account for the fact that (4.5) is a two-step estimation
procedure and take into account the uncertainty associated with estimating the working model
µω,∆,D“0pXiq. This is standard, though, and most statistical software automates this process; see,
e.g., Sant’Anna and Zhao (2020) and Callaway and Sant’Anna (2021).

A linear working model for Eωr∆Yi,t“2|Xi, Di “ 0s is a familiar choice, but not the only one.
More flexible, or even fully nonparametric, working models are possible, and the procedure is
the same: estimate the model on untreated units, get its fitted values for the covariate values
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Table 7: DiD estimates with covariates

Unweighted Weighted

Regression IPW Doubly Robust Regression IPW Doubly Robust

Medicaid Expansion -1.62 -0.86 -1.23 -3.46 0.18 0.49
(4.73) (4.76) (4.61) (2.29) (9.64) (10.30)

Notes: This table reports the 2 ˆ 2 DiD estimate comparing counties that expand Medicaid in 2014 to counties that do not expand
Medicaid, adjusting for the inclusion of 2013 covariate values using the methodologies discussed in Sant’Anna and Zhao (2020) and Call-
away and Sant’Anna (2021). The first column reports results using regression adjustment, the second column uses inverse probability
weighting based on a propensity score model using the included covariates, and the third column uses the doubly robust combination
of the two approaches. Standard errors (in parentheses) are clustered at the county level.

of the treated units, and then estimate the ATT p2q using (4.5). An important consideration
when choosing the working models is sample size. Large samples permit more flexible estimators
that do not sacrifice too much precision. In smaller samples, a parametric linear model may be
more appealing. Ultimately, the reliability of DiD RA estimators for ATT p2q depends on how
well pµω,∆,D“0pXiq approximates Eωr∆Yi,t“2|Xi, Di “ 0s. If the working model is misspecified, for
example by omitting relevant nonlinear terms, the resulting DiD RA estimator will be biased.

Table 6 showed that our covariates did not strongly predict untreated mortality trends and thus
do little to change our potential biased unconditional DiD estimates. However, ATT p2q can be
estimated conditional on covariates in a different way without needing to specify which variables
determine outcome trends. Instead, one can improve the comparability of the comparison group
directly by selecting a model for the conditional probability of being treated and applying an
inverse probability weighted (IPW) DiD procedure (Abadie, 2005). The logic of IPW builds on
the balance checks we conducted in Table 4: if imbalance in covariates is the source of parallel
trends violations, then adjusting the comparison group to be balanced on covariates can address
that bias. The adjustment takes the form of re-weighting the observed changes in adult mortality
rates for non-expansion counties to ensure that the expansion and non-expansion counties are
similar on covariates, thus addressing the compositional source of bias.

To implement the IPW DiD procedure and construct these “balancing weights”, we need to
model pωpXiq “ PωpDi “ 1|Xiq, the (weighted) conditional probability of belonging to the treat-
ment group. IPW weights are a function of pωpXiq and, for estimating ATT p2q, they take a form
that forces the underlying weighted distribution of covariates for comparison units to match the
distribution for treatment units (Rosenbaum and Rubin, 1983).14 Intuitively, these weights are
formed such that if we find some units that were likely to be observed in the treatment groups
(based on their covariate values) but ended up in the comparison group, we give these untreated
observations “extra” weight.

14To learn about ATT p2q, we do not need to re-weight the treated units because the identification challenge is
to estimate an untreated counterfactual. In fact, the RA estimator we discussed has a similar feature: it requires
an outcome model for untreated outcomes only, not treated ones.
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Formally, we can show that, under Assumptions CPT and SO, when panel data are available,

ATT p2q “ E
”´

wω,D“1pDiq ´ wω,D“0pDi, Xiq

¯

∆Yi,t“2

ı

(4.6)

where

wω,D“1pDq “ Dω
M

ErωDs, and wω,D“0pD,Xq “
ωp1 ´ DqpωpXq

1 ´ pωpXq

O

E
„

ωp1 ´ DqpωpXq

1 ´ pωpXq

ȷ

, (4.7)

see, e.g., Abadie (2005) and Sant’Anna and Zhao (2020). The structure of the weights in equation
(4.7) and the way they enter equation (4.6) highlights several intuitive features of how the IPW
estimator works. First, wω,D“1pDq is only non-zero for treated units, and wω,D“0pD,Xq is only
non-zero for untreated units, which means the estimator subtracts a particular mean of outcome
trends for untreated units from a particular mean of outcome trends for treated units. Second,
the wω,D“1pDq weights do not involve Xi and simply lead simply to a (ω-weighted) mean for the
treatment group. Third, the wω,D“0pD,Xq weights are functions of Xi that, as (4.7) shows, give
increasingly more weight to untreated units with high propensity scores. This specific weighting
function is what allows IPW weights to build a comparison group whose covariate distribution
matches the treatment group. Fourth, equation (4.7) clarifies that two types of weights both enter
an IPW analysis. We already discussed how the ω weights shape the parameter of interest, parallel
trends assumptions and estimation. These simply multiply the IPW weights which act to address
imbalance (and their product is rescaled to integrate to one within group). Finally, the appeal of
(4.6) is that if we have a better sense of how units sort into treatment than of the factors that
shape outcome trends, we may be more comfortable modeling pωpXiq than Eωr∆Yi,t“2|Xi, Di “ 0s.

To leverage the characterization of the ATT p2q in (4.6) for estimation and inference purposes,
we need a working model for the true propensity score pωpXiq. When X’s are all discrete and
low dimensional, this is simple and does not involve functional form restrictions: create covariate-
specific strata and then, within each strata, compute the proportion of treated units, and call these
estimates pπpxkq, xk being a strata-indicator. When X’s have continuous components, or when there
are too many strata relative to the available sample size, one can adopt a flexible working model,
πωpXiq, for the propensity score. A common choice for πωpXiq is a (weighted) logistic model whose
parameters can be estimated using maximum likelihood—or an alternative estimation procedure
such as inverse probability tilting (Graham, Pinto and Egel, 2012). We follow this strategy in our
Medicaid application and report in columns (2) and (4) of Table 6 the unweighted and weighted
maximum likelihood logit coefficients from our propensity score model. Our covariates appear to
explain expansion decisions better than untreated outcome trends, suggesting that an estimation
approach based on propensity scores may change our ATT p2014q estimate more than the RA
approach did. We then use these logit coefficients to get the fitted values for all observations,
pπωpXiq, that will serve as our estimates of pωpXiq.
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Based on these fitted values, we can estimate ATT p2q by

zATT ipwp2q “
1

n

n
ÿ

i“1

´

pwω,D“1pDiq ´ pwω,D“0pDi, Xiq

¯

∆Yi,t“2, (4.8)

where

pwω,D“1pDq “ Dω
M 1

n

n
ÿ

i“1

ωiDi, pwω,D“0pD,Xq “
ωp1 ´ DqpπωpXq

1 ´ pπωpXq

O

1

n

n
ÿ

i“1

ωip1 ´ DiqpπωpXiq

1 ´ pπωpXiq
. (4.9)

We report the ATT p2014q estimates and their standard errors using this IPW DiD procedure in
Table 5 (labeled as “IPW”) using both unweighted and population-weighted procedures, where we
use a logistic regression that is linear in covariates as our propensity score working model. We use
the delta method to account for the estimation uncertainty inherited in this two-step estimation
procedure when computing standard errors. The IPW DiD estimates are similar to the RA DiD
estimates in that we obtain positive estimates when we do not use population weights and negative
estimates when we weight. However, the weighted IPW estimate is almost twice as large as the
RA estimate, despite neither being statistically significant, and the unweighted IPW estimate is
less than half the size of the RA estimate. This is consistent with the broad conclusion from Table
6 that our covariates explain Medicaid expansion better than mortality trends.

IPW estimators for ATT p2q tend to be noisy when fitted propensity score estimates are too
close to 1 among untreated units, a condition related to the Assumption SO. The reason for this is
simple: when pπωpXiq is close to one among units with Di “ 0, the (estimated) inverse probability
weights pwω,D“0pD,Xq becomes more volatile, as one is essentially diving by zero. A good practice
when using IPW estimators is to check the plausibility of strong overlap using estimated propensity
scores. Figure 1 plots the propensity scores that come from the logit models in Table 6 for the two
groups of counties. Few untreated units have very high estimated propensity scores, so extreme
weighting is not a significant concern. In addition, propensity scores of non-expansion counties
seem to lie within the support of the expansion counties’ propensity scores, supporting strong
overlap. Trimming high- or low-propensity score observations from the sample may be warranted
when overlap is weak; for a discussion, see, e.g., Crump, Hotz, Imbens and Mitnik (2009), Sasaki
and Ura (2022), and Ma, Sant’Anna, Sasaki and Ura (2023).

The reliability of these two approaches to estimating conditional DiD designs centers on se-
lecting good models for two different functions: the conditional expectation of untreated outcome
changes and the true, unknown propensity score pωpXiq. So which approach should one pick? In
practice, there are major advantages to combining both in a way that leads to estimators for the
ATT p2q that are more robust against model misspecification (Sant’Anna and Zhao, 2020). This
is the so-called doubly robust (DR) approach, sometimes referred to as the augmented inverse
probability weighting approach; see, e.g., Sant’Anna and Zhao (2020) and Chang (2020).

The key idea of the DR DiD approach is to express the ATT p2q in terms of both ppXiq and
Eωr∆Yi,t“2|Xi, Di “ 0s in a way that it gives provides some “protection” in case the working models
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Figure 1: Distribution of Propensity Scores
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Notes: This figure shows the distribution of propensity scores using both the weighted and unweighted logit propensity score estimates
in our 2 ˆ 2 Medicaid example.

for these functions, pπpXiq and pµ∆,G“0pXiq, are wrong. The resulting DR estimator for the ATT p2q

is consistent when either of these nuisance working models is correctly specified. If one is exactly
right, it does not matter if the other is wrong. Furthermore, if both working models are only
slightly wrong, their errors will multiply, and DR will perform (asymptotically) better than either
one alone.15 Following the steps in Sant’Anna and Zhao (2020), we can express the ATT p2q as

ATT p2q “ E
”´

wω,D“1pDiq ´ wω,D“0pDi, Xiq

¯´

∆Yi,t“2 ´ Eωr∆Yi,t“2|Xi, Di “ 0s

¯ı

, (4.10)

with the weights as defined in (4.7). Notice that when we omit the mω,∆,D“0pXiq term from (4.10),
we are back to the IPW estimand (4.6). When we omit the wω,D“0pDi, Xiq term from (4.10), we
are back to the regression adjustment estimand (4.2).

Constructing a DR DiD estimator for the ATT p2q based on (4.6) is straightforward: choose a
flexible working model for the propensity score and compute its fitted values, pπωpXiq, a flexible
working model for the outcome evolution of untreated units and compute its fitted values for
all treated and untreated units, pµω,∆,D“0pXiq, and then use the plug-in principle to estimate the
ATT p2q by

zATT drp2q “
1

n

n
ÿ

i“1

´

pwω,D“1pDiq ´ pwω,D“0pDi, Xiq

¯´

∆Yi,t“2 ´ pµω,∆,D“0pXiq

¯

, (4.11)

with the estimated weights as defined in (4.9).
We report the ATT p2014q estimates and standard errors using the DR DiD procedure with

15We usually arrive at such estimands by deriving the efficient influence function; see, e.g., Sant’Anna and Zhao
(2020) for a discussion in DiD setups. See also Seaman and Vansteelandt (2018) for an overview. When we adopt
nonparametric or machine-learning-based estimators for the nuisance functions, we get a different type of double
robustness, “rate double robustness,” where we can trade-off precision between the different working models. For
more details, see, Kennedy, Ma, McHugh and Small (2017) and Smucler, Rotnitzky and Robins (2019).
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a linear in covariates working model for µω,∆,D“0pXiq and (weighted) logistic regression working
model that is also linear in covariates for pωpXiq in Table 7 (labeled as “Doubly Robust”). Both
unweighted and population-weighted results are fairly similar to IPW DiD estimates. However, an
advantage of the DR DiD procedures is that we are arguably less worried about model misspecifi-
cations.

Overall, in this section, we discussed different “forward-engineered” estimators for the ATT p2q

that respect conditional parallel trends, correctly incorporate covariates, and do not restrict treat-
ment effect heterogeneity. Between RA, IPW, and DR DiD estimators, we recommend practitioners
favor the doubly robust one as this procedure adds additional “protection” against modeling as-
sumptions compared to the RA and IPW approaches. When the strong overlap assumption is
questionable, though, RA DiD estimators can still work because they extrapolate the outcome
model to obtain predicted counterfactual outcome changes even for treated units with covariate
values not observed in the comparison group. The credibility of this extrapolation, however, rests
on additional assumptions about the accuracy of the working model outside the support of Xi in
the untreated group. If this extrapolation is not reliable, one can make the DR approach more
robust against weak overlap by trimming “extreme” propensity scores and performing a bias cor-
rection to ensure that the target parameter (the ATT p2) in our case) remains the same. See Ma
et al. (2023) for details.

4.5 Heterogeneity analysis

The identification result in equation (4.2) can be altered slightly to show that ATT p2q is an
aggregation of covariate-specific 2 ˆ 2 DiD estimands:

ATT p2q “ Eω

”

Eωr∆Yi,t“2|Xi, Di “ 1s ´ Eωr∆Yi,t“2|Xi, Di “ 0s

ˇ

ˇ

ˇ
Di “ 1

ı

.

Thus, Assumptions CPT and SO also imply that we can identify conditional ATT parameters:

ATTXi
p2q ” EωrYi,t“2p1q ´ Yi,t“2p0q|Di “ 1, Xis

“ Eωr∆Yi,t“2|Xi, Di “ 1s ´ Eωr∆Yi,t“2|Xi, Di “ 0s.

This not only demonstrates the building block structure of conditional designs, it also connects
the strategies we discussed for estimating ATT p2q itself to the underlying treatment effect hetero-
geneity by covariate values. When this heterogeneity is of interest in its own right it can also be
targeted, identified, and estimated (at least under some additional conditions).

When all covariates are discrete, estimating ATTXi
p2q parameters is fairly straightforward.

One can form saturated partitions xk, k “ 1, . . . , K, and then subset the data only to contain
information from the units from the specified partition k. At this stage, the analysis is analogous
to the unconditional DiD setup (except that you need to repeat this step from all partitions of
interest), as each ATTxk

p2q is identified by a (conditional on a discrete-variable) comparison of

28



means, i.e.,

ATTxk
p2q “ Eω

“

∆Yi,t“2|Di “ 1, Xi “ xk

‰

´ Eω

“

∆Yi,t“2|Di “ 0, Xi “ xk

‰

.

One can estimate these ATTxk
p2q’s using their sample analogs or using two-way fixed effects

regression specifications analogous to (3.7). Inference is also standard, provided that each partition
is sufficiently large. This type of exercise is commonly used to conduct heterogeneity analysis. For
example, suppose one wants to see if the effect of Medicaid expansion on adult mortality rate
varies across US census regions. Then, one would partition the data into US regions and run one
(unconditional) DiD analysis for each region, provided we have treated and untreated units in each
region.

When some covariates are continuous, or there are arguably too many partitions that make each
of them contain few observations, one can still identify the ATTXi

p2q’s, though they are harder to
estimate without auxiliary assumptions. In such cases, it is customary to identify and estimate a
more aggregated conditional ATT parameter than ATTXi

p2q. For instance, one may want to assess
if the effect of Medicaid expansion on adult mortality rates is higher (or lower) in counties with
an unemployment rate above the median than those below. Similar partitions could be made for
any other covariates. To formalize this notion of “partition specific” ATT, let PARTpXiq be some
user-specified partition of the covariate space such that PARTpXiq P t1, 2, . . . , Ku, and define

ATTkp2q “ Eω

“

Yi,t“2p1q ´ Yi,t“2p0q|Di “ 1, PART pXiq “ ks.

Under Assumptions CPT and SO, it follows that

ATTkp2q “ Eω

“

∆Yi,t“2|Di “ 1, PART pXiq “ k
‰

´ Eω

”

Eω

“

∆Yi,t“2

ˇ

ˇDi “ 0, Xi, PART pXiq “ k
‰

ˇ

ˇ

ˇ
Di “ 1, PART pXiq “ k

ı

,

implying that

ATT p2q “

K
ÿ

k“1

PωpPART pXiq “ k|Di “ 1qATTkp2q.

Thus, for heterogeneity analysis with covariates, one can partition the data with a user-specified
partition map PARTpXiq and then, within each of these partitions, use similar arguments as
we used to establish (4.2) to guarantee that each partition-specific ATT is identified (which is
precisely what we did to get ATTkp2q above). Regarding estimation and inference, one can use
regression adjustment, inverse probability weighting, or doubly robust estimators as in Section 4.4;
the difference is that you need to “localize” the analysis for each partition.

Obtaining the overall ATT p2q is just a matter of aggregating these partition-specific ATTs
using weights equal to the relative partition size among treated units. All these parameters have
clear causal interpretations, can be used to answer different policy questions, and are identified
under the same identification assumptions already discussed. Other types of heterogeneity analysis
are also possible and even attractive. For instance, Abadie (2005) discusses how one can highlight
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how the ATT varies across a subset of the covariates required for conditional parallel trends to
hold. For example, this would entail checking if the average effect of Medicaid expansion among
expansion counties varies with the 2013 poverty rate and/or median income. One can also get
the best linear approximation of these conditional ATT curves, which involves estimating fewer
parameters. These heterogeneity analyses are generally more granular than the partition-based
ones discussed above and do not require discretizing the data. They complement each other well.

We close this section with a remark on the choice of partition and the type of heterogeneity
analysis to conduct. Heterogeneity analysis has the potential to offer policymakers and researchers
novel insights about the treatment of interest and its mechanisms, opening the door for more
informed policy recommendations and targeted expansions. But how should one define the sub-
groups in which to estimate heterogeneous effects? If researchers knew the relevant partition that
policymakers care about, they could aim to estimate these particular partition-specific ATTs. But
this is rarely the case. Taking no stand about heterogeneity implies reporting unit-level effects,
which requires incredibly strong assumptions and could also lead to noisy estimates. On the other
hand, taking a too-coarse partition may mask important types of treatment effect heterogeneity.
So, it seems that a balance between these extremes is important for a policy-relevant heterogeneity
analysis. Estimating conditional ATTs across one or two covariate dimensions is useful, but it may
mix some other interactive effects. Another potential avenue is to go beyond averages and adapt
the sorted-effects procedure proposed by Chernozhukov, Fernández-Val and Luo (2018) to DiD
designs. It would also be interesting and practically relevant to extend the heterogeneity tools for
experimental data discussed in Chernozhukov, Demirer, Duflo and Fernández-Val (2023) to DiD
setups. In our view, this is an area in which applied econometrics practice would benefit from
more thorough methodological guidance.

5 DiD designs with multiple time periods

The previous sections focused on fundamental identification issues and estimation approaches for
2 ˆ 2 building blocks, but generally did not build them into anything because they targeted the
only feasible ATT ptq, ATT p2q. DiD designs with multiple periods are notably different. They can
target ATT s in each period after treatment to trace out dynamics, and they can produce cross-
group outcome trends from before treatment starts to evaluate the plausibility of parallel trends.
Multiple periods also admit the possibility of more complex treatment variation. We will focus on
staggered-timing designs in which treatment “turns on” at different times for different units and
stays on, as the Medicaid expansion did. It is possible, however, to use DiD methods to study
treatments that “turn off” or occur more than once, though some modifications are warranted; see,
e.g., de Chaisemartin and D’Haultfoeuille (2020, 2023a).

We need to expand the notation to define the relevant concepts with multiple periods. When
treatment can only happen at one point in time (so we still have only two treatment groups with
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Di equal to one or zero), the only changes we need to make are to acknowledge that time runs
from t “ 1, 2, . . . , T , and that the map between potential outcomes and observed outcomes is

Yi,t “ DiYi,tp1q ` p1 ´ DiqYi,tp0q.

By Assumption NA, we have that Yi,t “ Yi,tp0q for all pre-treatment periods, and that, in post-
treatment periods, we observe Yi,tp0q if the group remains untreated by t “ T , and Yi,tp1q for
groups treated at the unique treatment date, t “ g.

5.1 Simple event studies p2 ˆ Tq

The term “event study” refers to estimating and reporting effects across a range of time periods
before and after treatment. A design with one treatment timing group and multiple time periods
(2 ˆ T ) is the simplest case in which to discuss event studies. We thus expand our analysis of
the 2014 Medicaid expansion group to include data from 2009 to 2019. We report population-
weighted results for brevity, as this is arguably more policy-relevant in the Medicaid expansion
context. Figure 2 plots the time series of the weighted mortality rates for the 2014 and post-
2019 expansion counties. It is the analog of Table 2 in the sense that it presents the raw data
elements necessary to construct event study estimates. The treatment year 2014 naturally divides
the x-axis into two windows: post-treatment (2014-2019) and pre-treatment (2009-2013). An event
study constructs DiD-type estimates in both windows, but they have different interpretations.

Figure 2: County Mortality Trends by Expansion Decision
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Notes: This figure shows county population-weighted average mortality rates for adults ages 20-64 by expansion category from 2009 to
2019.
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5.1.1 Event study estimates in the post-treatment periods

The target parameters in a simple event study are the ATT ptq’s with the same definition as in
(3.5); there are just more of them to identify, estimate, and interpret than in a 2 ˆ 2 design. The
ATT ptqs in the post-treatment period, t ě g, reflect treatment effect dynamics. For example,
economic models that view health as a stock imply that ATT ptq may grow if Medicaid stimulates
health investments. Furthermore, people and institutions may take time to adjust their behavior
after Medicaid expands, suggesting a dynamic treatment effect. Event study parameters answer
these kinds of subtle questions.

Identification of each ATT ptq follows from the same arguments outlined in section 3. Note,
however, that an event study analysis requires parallel trends in every post-period, as in the
following assumption.

Assumption PT-ES (2 ˆ T Parallel Trends). The average change of Yi,tp0q from Yi,t“g´1p0q is
the same between treated and comparison units for all post-treatment periods t ě g, i.e.,

EωrYi,tp0q ´ Yi,t“g´1p0q|Di “ 1s “ EωrYi,tp0q ´ Yi,t“g´1p0q|Di “ 0s @t ě g. (5.1)

Assumption PT-ES suggests that learning about long-run effects requires stronger assumptions
than learning about short-run effects. That is, to identify the average effect of Medicaid expansion
in 2019 among expansion counties, Assumption PT-ES requires parallel trends to hold in every
year from 2014 to 2019. On the other hand, if we are interested in learning only about short-run
effects, say effects up until 2015, we would require it to hold from 2014 and 2015 only.

If Assumption PT-ES holds (as well as no-anticipation), then each ATT ptq is identified by a
DiD comparison between period g ´ 1 and t exactly like in (3.5), and they can be estimated by
the familiar comparison of four sample averages:

zATT ptq “ pY ω,D“1,t ´ Y ω,D“1,t“g´1q ´ pY ω,D“0,t ´ Y ω,D“0,t“g´1q. (5.2)

Figure 3 plots (weighted) event study estimates for the 2014 Medicaid expansion group.
zATT ptq’s lie to the right of the vertical dashed line. The estimate for event-time 0, which means
that t “ g “ 2014 in this case equals the 2 ˆ 2 results from table 2 (´2.7). The other estimates
have the same DiD form: comparisons of cross-group changes in different post-2014 years (t) but
always relative to 2013 (g ´ 1). The point estimates do not suggest large mortality effects from
Medicaid expansion among expansion counties.

5.1.2 Event study estimates in the pre-periods

Multiple time periods also allow for falsification/placebo tests based on DiD-type comparisons
between pre-treatment periods. The no-anticipation assumption implies that all ATT ptq’s before
time g are equal to zero, which means that a 2ˆ2 estimand between periods t “ g´k and t “ g´1,
k ą 1, equals a difference in weighted average untreated potential outcome trends (as they are all
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Figure 3: 2 ˆ T Event Study

Estimate (t ∈ {0, 5}) = −0.70
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Notes: This figure shows the event study estimates in the 2 ˆ T case, comparing counties that expanded in 2014 to counties that have
not yet expanded by 2019, using the regression adjustment estimator from Callaway and Sant’Anna (2021). The outcome variable is
the crude mortality rate for adults ages 20-64, and the standard errors are clustered at the county level. The point estimate is reported
by the circles, and both point-wise (black) and simultaneous (red) confidence intervals are reported with the vertical lines.

from pre-treatment periods):

τ´k “ EωrYi,t“g´kp0q ´ Yi,t“g´1p0q|Di “ 1s ´ EωrYi,t“g´kp0q ´ Yi,t“g´1p0q|Di “ 0s

“ EωrYi,t“g´k ´ Yi,t“g´1|Di “ 1s ´ EωrYi,t“g´k ´ Yi,t“g´1|Di “ 0s.

The τ´k terms are usually called “differential trends” or “pre-trends”, and they appear to the left of
the vertical dashed line in Figure 3. The credibility of event study analyses rests in large part on
finding small estimates of τ´k, but Figure 3 illustrates how challenging it can be to draw conclusions
from informally looking at these pre-trends. No individual τ´k is statistically significant, so we fail
to reject the null hypothesis that the pre-trend estimates equal zero (individually or jointly). This
kind of result is often interpreted to mean that parallel trends is plausible. But the τ´k’s also tend
to be positive with a mean of about 2.3, which is larger in magnitude than all post-period point
estimates but one. Sometimes, this kind of result is used to argue that parallel trends may not be
plausible. Ultimately, do these results support or refute the plausibility of parallel trends?

Recent methodological work suggests three practical lessons about how to handle pre-trend
estimates in terms of assessing the plausibility of parallel trends; see, e.g., Bilinski and Hatfield
(2018), Manski and Pepper (2018), Kahn-Lang and Lang (2020), Roth (2022), Rambachan and
Roth (2023), Dette and Schumann (2024), and Freyaldenhoven, Hansen, Pérez-Pérez and Shapiro
(2024). The most fundamental, which will tend to shape language more than practice, is that
Assumption PT-ES is not testable, as it only makes restrictions on untreated potential outcomes
in post-treatment periods, t ě g. Under no-anticipation, pre-trends measure something with
the same form as parallel trends—differences in untreated outcome trends between treated and
untreated units—but they necessarily measure it in the “wrong” periods t ă g. This does not
mean parallel pre-trends are not informative; it just means they are not the same as the parallel
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trends assumption in Assumption PT-ES. If the factors that drive pre-trends also matter for post-
treatment trends in Yi,tp0q, then pre-treatment coefficients close to zero support the plausibility of
Assumption PT-ES. In such cases, large pre-trends may cast doubt on it.

It is important to note that pre-trends are not necessarily informative about parallel trends
in post-treatment periods. Sometimes, looking too far before treatment starts is not informative
about parallel trends in post-treatment periods, as the economic environment may be too different
from time periods near the treatment date. Ultimately, how informative pre-trends are for the
plausibility of Assumption PT-ES is case-specific, though we would prefer to have parallel pre-
trends. In fact, when it is plausible to strengthen Assumption PT-ES to hold in all periods (and not
only in post-treatment periods), one can construct estimators for the ATT ptq that are more precise
than those in (5.2); see, e.g., Borusyak et al. (2024), Gardner (2021), Harmon (2024), Marcus and
Sant’Anna (2021), Wooldridge (2021), and Chen, Sant’Anna and Xie (2024). In fact, Chen et al.
(2024) derive the semiparametric efficiency bound and propose simple-to-use plug-in estimators
with the shortest possible confidence intervals one can get without introducing additional modeling
restrictions. Such estimators weight pre-treatment in a non-uniform manner and explore the
correlation structure of changes in outcomes across periods and between groups to explore all the
empirical content of the identification assumptions efficiently. In such cases, though, one would
require parallel trends to hold pre-treatment periods, parallel pre-trends becomes testable (as the
model is over-identified), and τ´k could be used to assess its plausibility directly; see Marcus and
Sant’Anna (2021) and Chen et al. (2024) for a discussion.

The second lesson is that statistical precision shapes the usefulness of pre-trend estimates. The
hypothesis tests for parallel pre-trends in figure 3 are low-powered to detect practically important
violations (Roth, 2022, and Freyaldenhoven et al., 2024). The τ´k estimates fail to rule out flat
pre-trends, but as we shall see below, they also fail to rule out large pre-trends that would indicate
serious bias in the zATT ptqs. They simply do not say very much.16 Roth (2022) discusses how
conditioning the analysis on these kinds of low-powered tests can exacerbate biases and should be
interpreted with care.

The third lesson is that researchers can make better use of pre-trend estimates by taking a
stand on the size of plausible and/or problematic parallel trends violations. For example, Bilinski
and Hatfield (2018) propose selecting a value for differential trends that would fully explain the
estimated treatment effects and then using it as the null hypothesis instead of zero when conducting
statistical tests of the estimated pre-trends; see also Dette and Schumann (2024). Rambachan
and Roth (2023) develop inference methods for an approach that bounds the ATT ptqs under
assumptions about the maximum size of parallel trends violations based on pre-treatment periods
(see also Manski and Pepper, 2018). One can either select a magnitude using contextual knowledge

16Another possibility is that very precisely estimated pre-trends are distinguishable from zero yet also rule out
even small violations. The magnitude of the violations also matters: a precisely estimated but small violation of
parallel trends in pre-treatment periods is “better” than an imprecisely potentially large estimated pre-trend that
does not rule out zero.
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or set it equal to a multiple of the largest period-to-period pre-trend estimate. One then constructs
an identified set that contains ATT ptq not under parallel trends but under the weaker assumption
that parallel trends is not violated by more than this pre-determined maximum in each post-period.
Importantly, Rambachan and Roth (2023) also show how to use the estimated covariance matrix of
the event study estimates to construct confidence intervals around the set.17 Given the existence
of these methods, which are theoretically grounded in how to consider violations of pre-trends,
we caution producers (and consumers) of DiD work against the common practice of only using a
simple “eye-test” for whether pre-trends differ substantially from zero.

In our application, Rambachan and Roth (2023)’s method underscores how little information
the pre-trend estimates convey. The largest one-period pre-trend is between event-time -5 and -4,
when outcomes fall by roughly four deaths more in the expansion group versus the non-expansion
group. If we assume that parallel trend violations are no bigger than this, the identified set for
ATT p2014q is ´2.6˘4 “ r´6.6, 1.4s, and given the size of the pre-period standard errors, we obtain
a robust confidence interval of r´11.1, 5.1s, and interval that spans implausibly large effects in both
directions. Assuming smaller parallel trend violations would shrink this interval, but applying the
method to subsequent event-times widens it. In general, Rambachan and Roth (2023) provide a
flexible method to use information about potential parallel trends violations drawn either from
external knowledge or the τ´k estimates, as well as the precision of the pre-trend estimates, to
gauge (statistically) the robustness of the zATT ptq’s.

When pre-trends suggest that Assumption PT-ES is not plausible, a way forward is to assume
that it only holds after conditioning on covariates and proceeding similarly to what we described
in Section 4.4; we discuss this path in detail in Section 5.1.4. Alternatively, one can attempt
to parametrically model the violations of parallel trends, usually by including unit-specific linear
trends; see, e.g., Mora and Reggio (2019), Wooldridge (2021, Section 7), Lee and Wooldridge
(2023), and Freyaldenhoven et al. (2024). We note, however, that the practice of using unit-specific
linear trends deviates from the standard DiD procedures: it relies on alternative identification
assumptions involving an explicit parametric model for unit-specific trends. We also note that
sensitivity analysis procedures that do not rely on such models are available, e.g., Rambachan and
Roth (2023), and we encourage practitioners to consider them.

5.1.3 Estimation and aggregating across time in event-studies

The link between a 2 ˆ T event study and a series of 2 ˆ 2 DiD building blocks makes estimation
simple. The point estimates in Figure 3 are the ATT ptq estimates based on (5.2).18 An equivalent
way to obtain all the zATT ptq’s in one step is to run a TWFE regression with time fixed effects, θt,

17In cases where a measured variable accounts for the pre-trends, Freyaldenhoven, Hansen and Shapiro (2019)
develop two-stage-least-squares estimators that recover ATT ptq parameters by extrapolating the pre-period rela-
tionship between outcomes and the covariate into the post-period.

18We estimate these with the did R package from Callaway and Sant’Anna (2021).
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unit fixed effects, ηi, and a set of interactions between the treatment group dummy and the time
dummies. Omitting the treatment interaction for t “ g ´ 1 avoids multicollinearity and fixes g ´ 1

as the baseline period for all βt estimates, which matches Assumption PT-ES. This generalizes the
TWFE regression equation for a single ATT ptq in (3.7) to

Yi,t “ θt ` ηi `

g´2
ÿ

k“1

βk p1tGi “ gu ¨ 1tt “ kuq `

T
ÿ

k“g

βk p1tGi “ gu ¨ 1tt “ kuq ` εi,t (5.3)

This regression produces identical estimates to those obtained “by hand” via (5.2): pβt “ zATT ptq.
It also generates (point-wise) confidence intervals based on clustered standard errors as discussed
in Section 3.3. An additional issue in event study inference, however, involves the fact that we are
now estimating many treatment effect parameters, often to study the evolution of ATT ptq over
time. Thus, when we compare across event study estimates, we are conducting many hypothesis
tests, and the usual normal critical values used to construct confidence intervals do not account
for these. Asymptotically correct inferences about the entire event study curve requires “inflating”
critical values to perform a multiple hypothesis test adjustment. In Figure 3, the thick black bars
represent the standard pointwise confidence intervals from clustered standard errors at the county
level, while the red line shows uniform confidence bands that cover the 95% confidence interval
for the entire treatment path of the event study coefficients after accounting for multiple testing.
These are produced by default in the Callaway and Sant’Anna (2021) statistical packages, using
a multiplier bootstrap procedure to compute critical values of the sup-t test statistic. Alterna-
tively, one can construct these using the estimated variance-covariate matrix of all pβt’s paired with
the Montiel Olea and Plagborg-Moller (2018) simulation procedure. Alternative bootstrap proce-
dures, such as the nonparametric bootstrap, the multiplier bootstrap, and the weighted/Bayesian
bootstrap, can also be used to compute the sup-t critical values that account for multiple testing.19

A final estimation issue arises when targeting aggregations of the ATT ptqs. For example, the
average treatment effect in the post-period, ATTavg “ 1

T´pg´1q

řT
t“g ATT ptq, is a convenient scalar

measure that improves statistical precision, especially when ATT ptq is relatively constant. The
easiest way to get an estimate zATT avg is just to construct it from the 2 ˆ 2 zATT ptq building
block estimates. Standard post-estimation commands achieve this if the event study estimates
come from a regression, and newer DiD packages report this parameter automatically. A common
shortcut, however, is to run a second regression that replaces the event study dummies with the
treatment status dummy. Di,t “ 1tDi “ 1u ˆ 1tt ě gu:

Yi,t “ θt ` ηi ` βOLSDi,t ` εi,t (5.4)

19The sup-t critical value governs the width of the uniform confidence band that yields simultaneous coverage
probabilities for a given confidence level (Montiel Olea and Plagborg-Moller, 2018). In our context, its main idea is
constructing asymptotically valid critical values for the entire event-study trajectory based on the maximum of all t-
statics (one for each event-time considered). This procedure avoids the conservativeness of other traditional multiple-
testing corrections, such as Bonferroni. See Montiel Olea and Plagborg-Moller (2018) for a general discussion.
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Unfortunately, the (weighted) least squares estimator pβOLS does not generally equal the zATT avg.
The reason is that pβOLS is equivalent to first collapsing the multiple-periods data to averages in
the post- and pre-periods and then estimating a 2 ˆ 2 DiD on the resulting means. This, in turn,
is the same as subtracting the average pre-period τ´k estimate (including the zero at time g ´ 1)
from the average post-period zATT ptq estimate. This implies that when we want to interpret both
βts from (5.3) and βOLS from (5.4), we would need to strengthen Assumption PT-ES to hold in
every time period, and not only in the post-treatment periods.20 To the extent that the gap in
mean outcomes over the whole pre-period differs from the gap in outcomes in period t “ g´1, the
two summary parameters will not be equal. In Figure 3, the two summary parameters are quite
different. zATT avg equals -0.78 while pβOLS equals -2.60.21

5.1.4 Covariates in event studies

Another advantage of seeing event studies as collections of 2 ˆ 2 building blocks is that all the
tools for incorporating covariates from Section 4 immediately apply to each event study estimate.
In fact, the only difference is that instead of using “short-differences” ∆Yi,t“2, one would now use
“long-differences”, Yi,t ´Yi,t“g´1. This would imply that using the regression-adjustment procedure
would require estimating a working model for EωrYi,t ´ Yi,t“g´1|Di “ 0, Xis for each time t. The
propensity score working model used to construct the IPW DiD estimate (4.6), on the other hand,
is exactly the same as in a 2 ˆ 2 analysis of the same groups. Since the DR DiD estimation
procedure builds on both RA and IPW procedures, it would involve estimating different outcome-
regression working models for each time t. We also note that the potential pitfalls of controlling
for covariates in a TWFE specification still apply with multiple periods and actually become more
complex (Caetano and Callaway, 2024).

For completeness and ease of access, we list the RA, IPW, and DR estimands for ATT ptq,

ATTraptq “ EωrYi,t ´ Yi,t“g´1|Di “ 1s ´ Eω

”

EωrYi,t ´ Yi,t“g´1|Xi, Di “ 0s

ˇ

ˇ

ˇ
Di “ 1

ı

,

ATTipwptq “ E
”´

wω,D“1pDiq ´ wω,D“0pDi, Xiq

¯

pYi,t ´ Yi,t“g´1q

ı

,

ATTdrptq “ E
”´

wω,D“1pDiq ´ wω,D“0pDi, Xiq

¯´

Yi,t ´ Yi,t“g´1 ´ EωrYi,t ´ Yi,t“g´1|Xi, Di “ 0s

¯ı

,

where wω,D“1pDiq and wω,D“0pDi, Xiq are as defined in (4.7).
Figure 4 shows weighted event study estimates using our three preferred covariate strategies:

regression adjustment, inverse propensity weighting, or doubly-robust estimation. In our case,
covariates do little to change the unadjusted estimates. Note, however, that Borgschulte and
Vogler (2020) use an IPW estimator with different covariates selected by a lasso procedure and

20The decision to estimate each zATT ptq relative to period t “ g ´ 1 comes directly from the choice to define
PT that way. When one is comfortable in assuming parallel trends in every period, one can typically form more
efficient estimators than those discussed above. See Marcus and Sant’Anna (2021) for a discussion

21Interestingly, this quantity is almost identical to our estimate of ATT p2014q, but rather than representing
anything reassuring, it comes from the offsetting effects of positive pre-period estimates and small post-period ones.
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obtain notably stronger evidence of mortality reductions. Evidently, the exact set of covariates one
conditions on matters a great deal in this analysis, and, as we have discussed earlier, one should
attempt to include in Xi all the determinants of the change in untreated potential outcome or of
the treatment assignment.

Figure 4: 2 ˆ T Event Study With Covariates

Regression IPW Doubly Robust
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Notes: This figure shows the corresponding event study estimates with the inclusion of covariates. The outcome variable is the crude
mortality rate for adults ages 20-64, and the covariates include the percentage of the county population that is female, the percentage
of the county population that is white, the percentage of the county population that is Hispanic, the unemployment rate, the poverty
rate, and county-level median income. The point estimate is reported by the circles, and both point-wise (black) and simultaneous (red)
confidence intervals are reported with the vertical lines.

5.2 Staggered treatment adoption (G# ˆ T)

Viewing 2ˆT event studies as a collection of 2ˆ2 DiD building blocks makes the jump to staggered
timing designs straightforward. The key distinction is that with staggered timing, each treatment
date defines a distinct treatment group, and each of these has its own set of simple event study
parameters. New choices arise about the comparison units used to identify and estimate these
group-specific event studies, as well as about how to aggregate the estimates across timing groups.
The 2ˆ2 structure, as well as all the tools we have developed to evaluate parallel trends (covariate
balance and pre-trends) and to estimate (with or without weights and covariates), carry over.

When treatment start dates can vary across units, we need to allow the potential outcomes, and
thus the target parameters and identifying assumptions, to reflect this richer notion of treatment.
We therefore index potential outcomes by the time treatment begins, g: Yi,tpgq; and use Yi,tp8q

to denote never-treated potential outcomes.22 Gi denotes each unit’s treatment date, and with

22Let 0s and 1s be s-dimensional vectors of zeros and ones, respectively, and denote the potential outcome
for unit i at time t if first exposed to the treatment at time g by Yi,tp0g´1,1T´g`1q, and denote by Yi,tp0T q the
outcome if untreated by time t “ T . We discussed the two-period treatment this way in section 3.1 when we defined
potential outcomes as a function of the period one and period two treatment. These treatment paths define the
potential outcomes we work with: Yi,tpgq “ Yi,tp0g´1,1T´g`1q and Yi,tp8q “ Yi,tp0T q. Writing potential outcomes
as functions of treatment paths helps with transparency regarding causal parameters of interest and the DiD design
we are in. When treatment can turn on and off, writing potential outcomes in terms of the entire path becomes
crucial to avoid “hidden” assumptions that rule out treatment effect heterogeneity and dynamics. Due to space
constraints, we do not cover these cases in this article.
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some abuse of terminology, we call units not exposed to treatment by period T the “never-treated”
group.23 Finally, we use G to represent the set of all treatment times (rows of Table 1 in our
example). With these modifications, we can map potential outcomes to observed outcomes using
a generalization of (3.1):

Yi,t “
ÿ

gPG
Yi,tpgq1tGi “ gu.

With multiple treatment groups, we also need to extend our notion of no-anticipation (though
its empirical content is exactly the same).

Assumption NA-S (No-Anticipation with staggered treatment timing). For all units i that are
eventually treated and all pre-treatment periods t, Yi,tpgq “ Yi,tp8q.

Like before, Assumption NA-S imposes that treatment effects are zero in all pre-treatment
periods as a consequence of units not acting on the potential knowledge of future treatment dates
before they are actually exposed to treatment. We maintain this assumption throughout this
section.

Finally, we assume that a “never-treated” group always exists in our staggered DiD setup. If all
units are eventually treated, we drop all the data from when the last cohort is treated, so the last-
treated cohort becomes the “never-treated” cohort, and T here denotes the number of available
periods in the subset of the data that we will use in our analysis. This is essentially without
loss of generality because, under standard DiD assumptions, we cannot identify any ATT for
periods where all units are treated. We also dropped data from units treated in the first available
period, Gi “ 1, as such treatment group does not have any pre-treatment data, preventing us from
conducting a DiD analysis.

Figure 5 plots average weighted mortality data by the year of Medicaid expansion (Gi) and
time. As in Table 2 and Figure 2, these are all the means necessary to calculate a staggered DiD
estimate. Like in Section 5.1, we only report population-weighted results for brevity throughout
this section.

5.2.1 Building block parameters with staggered adoption

Staggered treatment timing affects the structure of a DiD analysis because it changes the definition
of treatment. Until now, we have used counties in the 2014 expansion states as the only treatment
group and have represented them with “the” treatment dummy, Di. But Table 1 shows that as
of 2019, there were four different groups of expansion states defined by whether they expanded
Medicaid in 2014, 2015, 2016, or 2019. Therefore, Di is not rich enough to capture the relevant

23In practice, “never-treated” really means “not observed to be treated by t “ T .” Given more data, units
untreated at T could, in many cases, take up the treatment. In fact, this is the case with the Medicaid expansion
analysis in which we use data through 2019 but include states that expanded Medicaid in 2020, 2021, and 2023 as
“never treated” alongside states that have not expanded as of 2024.
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Figure 5: County Mortality Trends by Expansion Decision with Staggered Timing
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Notes: This figure shows county population-weighted average mortality rates for adults ages 20-64 by expansion year from 2009 to 2019.

definition of treatment groups in staggered setups because there are many treatment groups, not
just two. Fortunately, we can use the treatment timing notation, Gi, to define ATT parameters,
parallel trends assumptions, and estimators just as we have done so far.

A simple 2ˆ2 DiD design had one target parameter (ATT p2q), and a 2ˆT DiD design had T´1

of them: T ´ pg ´ 1q post-treatment parameters, ATT ptq, t ě g, and g ´ 2 pre-trend parameters.
In staggered DiD designs, each treatment group (sometimes referred to as a cohort), defined by
its treatment date g, has its own set of T ´ 1 event study parameters. We call these group-time
average treatment effects:

ATT pg, tq “ EωrYi,tpgq ´ Yi,tp8q|Gi “ gs.

Each ATT pg, tq is the average treatment effect of starting treatment at period g relative to never-
starting it, at time period t, among units that actually started treatment in period g. It is simply
a set of event study parameters for treatment timing group g. The unobserved counterfactuals are
now untreated potential outcome means for each treatment group in each period, EωrYi,tp8q|Gi “

gs.

5.2.2 Identification with staggered designs

Identifying the ATT pg, tqs works exactly as in the previous sections because they are just group-
specific event studies. Under no anticipation, a set of parallel trends assumptions for t ě g identifies
the causal post-treatment parameters. DiD comparisons for t ă g represent differential pre-trends
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in untreated potential outcomes.
The most important way that staggered DiD changes this approach is that having access to

multiple treatment groups with different treatment starting dates allows one to use alternative
sets of comparison groups. For example, our Medicaid analysis so far has used counties in states
that did not expand Medicaid by 2019 as the comparison group. For estimating, say, the ATT

for the 2014 expansion group in 2015, counties in states that did not expand until 2016, 2017,
or 2018 could also serve as comparison units.24 Choosing which comparison groups to use to
identify an ATT pg, tq is directly tied to the form of parallel trends. Staggered timing creates many
potential parallel trends relative to simple event-studies and especially 2 ˆ 2 setups. Here, we
discuss three types of staggered parallel trends. The first two use either the never-treated units
or any not-yet-treated groups as the comparisons for all eventually-treated groups (Callaway and
Sant’Anna, 2021), and the third option assumes that parallel trends holds in all periods and in all
groups, which is something that several recent DiD papers have imposed; see, e.g., de Chaisemartin
and D’Haultfoeuille (2020); Sun and Abraham (2021); Wooldridge (2021); Borusyak et al. (2024);
Harmon (2024).25

Assumption PT-GT-Nev (Parallel Trends based on never-treated groups). For every eventually
treated group g and post-treatment time period t ě g,

EωrYi,tp8q ´ Yi,t´1p8q|Gi “ gs “ EωrYi,tp8q ´ Yi,t´1p8q|Gi “ 8s.

Assumption PT-GT-NYT (Parallel Trends based on not-yet-treated groups). For every even-
tually treated group g, not-yet-treated group g1 and time periods t such that t ě g and g1 ą t,

EωrYi,tp8q ´ Yi,t´1p8q|Gi “ gs “ EωrYi,tp8q ´ Yi,t´1p8q|Gi “ g1
s.

Assumption PT-GT-all (Parallel Trends for every period and group). For every treatment
groups g and g1 and time periods t,

EωrYi,tp8q ´ Yi,t´1p8q|Gi “ gs “ EωrYi,tp8q ´ Yi,t´1p8q|Gi “ g1
s.

Assumption PT-GT-Nev is the analog of the PT assumptions we used in the 2 ˆ T design. It
uses the never-treated units as the relevant comparison group for all eventually-treated units, and
it only imposes parallel trends in post-treatment periods. In our Medicaid application, this would
entail using the non-expansion counties as the comparison group for the 2014, 2015, 2016, and 2019
expansion groups. In addition, since Assumption PT-GT-Nev only imposes parallel trends for the

24We can even use data from counties that expanded Medicaid in 2015 as part of our comparison group for
ATT p2014, 2015q, as long as the data for the 2015 cohort that we use comes from 2014 or earlier (which are
pre-treatment data for that group).

25While these three types of parallel trends are fairly intuitive choices, others are possible. For instance, Cengiz,
Dube, Lindner and Zipperer (2019) use a comparison group of units treated at least δ ` 1 periods after time g.
Thus, their parallel trends is tailored to this particular choice. As a result, all of their ATT pg, tq estimates from
time g to time g ` δ use the same comparison group. Marcus and Sant’Anna (2021) also discuss other alternative
parallel trends assumptions.
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future, the farthest we can go into pre-treatment periods is t “ g ´ 1, which will serve as the only
(justifiable) baseline period. More formally, under Assumption PT-GT-Nev, it is straightforward
to show that, for post-treatment periods

ATT pg, tq “ EωrYi,t ´ Yi,t“g´1|Gi “ gs ´ EωrYi,t ´ Yi,t“g´1|Gi “ 8s, (5.5)

which shows that ATT pg, tq is identified (Callaway and Sant’Anna, 2021; Sun and Abraham, 2021).
Note that (5.5) highlights that we are essentially back to a 2 ˆ 2 design when it comes to learning
about ATT pg, tq: it only leverages data from two periods, t (post) and g ´ 1 (pre), and two
treatment groups, Gi “ g (treated) and Gi “ 8 (comparison).

Assumption PT-GT-NYT allows one to use not only the never-treated units but any group
of units that are not-yet-treated by time t. In our Medicaid example, we could now use non-
expansion counties and 2016 and 2019 expansion counties as comparison groups when estimating
ATT p2014, 2015q. Based on Assumption PT-GT-NYT, Callaway and Sant’Anna (2021) has shown
that we can identify the ATT pg, tq for post-treatment periods t ě g by26

ATT pg, tq “ EωrYi,t ´ Yi,t“g´1|Gi “ gs ´ EωrYi,t ´ Yi,t“g´1|Gi ą maxtg, tus. (5.6)

Once again, this result highlights identifying the ATT pg, tq’s in post-treatment periods is a matter
of going back to 2 ˆ 2 setups: it only leverages data from two periods, t (post) and g ´ 1 (pre),
and two treatment groups, Gi “ g (treated), and Gi ą t (comparison).27

Finally, Assumption PT-GT-all allows the use of any not-yet-treated units as a comparison
group, as well as any pre-treatment period as a baseline period. For instance, to identify the ATT
for 2015 expansion counties, we can now use the never-treated, 2016 and 2019 expansion groups,
and use any or all of the years from 2009 to 2014 as a baseline. Based on Assumption PT-GT-all,
it is easy to show that, for any pre-treatment period tpre ă g and any not-yet-treated group g1 ą t,
we can identify the ATT pg, tq for group g’s post-treatment periods t ě g by

ATT pg, tq “ EωrYi,t ´ Yi,tpre |Gi “ gs ´ EωrYi,t ´ Yi,tpre |Gi “ g1
s. (5.7)

Again, even this more complex estimand (5.7) maps back to the 2 ˆ 2 DiD setup, as it leverages
two periods, t (post) and tpre (pre), and two groups, Gi “ g (treated) and Gi “ g1 (comparison).
This representation makes it clear that, in practice, we can leverage various pre-treatment periods
and not-yet-treated comparison groups to characterize the ATT pg, tq under Assumption PT-GT-

26de Chaisemartin and D’Haultfoeuille (2020) have derived the same results but restricting attention to instan-
taneous treatment effects, that is, ATT pg, gq’s. They do allow for treatment turning on and off, but also impose
that being exposed to a treatment today does not affect outcomes tomorrow (a no-carryover assumption). See
de Chaisemartin and D’Haultfoeuille (2023a) for some extensions.

27We note that more general results are also possible. In fact, for any not-yet-treated group g1 ą t, it is easy
to show that, under Assumption PT-GT-NYT, for t ě g, ATT pg, tq “ EωrYi,t ´ Yi,t“g´1|Gi “ gs ´ EωrYi,t ´

Yi,t“g´1|Gi “ g1s. One can then flexibly combine the different comparison groups by leveraging user-specified or
efficiency-oriented weights. Chen et al. (2024) discuss how to efficiently explore all the information implied by the
identification assumptions to form semiparametrically efficient DiD estimators, i.e., estimators that asymptotically
enjoy the shortest possible (theoretically-justified) confidence intervals without making strong functional form or
model-based assumptions related to error terms such as homoskedasticity and restrictions on serial dependence.
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all. We can also combine several of these to form an ATT pg, tq estimand that uses more data
Wooldridge, 2021; Gardner, 2021; Liu, Wang and Xu, 2024; Borusyak et al., 2024; Chen et al.,
2024. An intuitive estimand that naturally extends (5.6) and allows us to use more pre-treatment
data is given by

ATT pg, tq “ EωrYi,t ´ Y i,tďg´1|Gi “ gs ´ EωrYi,t ´ Y i,tďg´1|Gi ą maxtg, tus, (5.8)

where Y i,tďg´1 “
řg´1

s“1 Yi,s

L

pg ´ 1q is the time average of group g pre-treatment periods for each
unit i; see, e.g., Callaway (2023, Section 3.2), Lee and Wooldridge (2023), and the discussion in
de Chaisemartin and D’Haultfoeuille (2023b, Section 3.2.4). Although the estimand does look
different than the previous one, it is easy to see that it also resembles a 2 ˆ 2 design: it effectively
leverages two periods, t (post) and the average of all period t ă g (pre), and two groups, Gi “ g

(treated) and Gi ą t (comparison). In practice, however, there is no general econometrics guarantee
that estimators based on (5.8) will be more precise than estimators based on (5.6); see, e.g., Harmon
(2024). This arises because it is not always optimal to weigh all pre-treatment periods equally when
forming estimators for ATT pg, tq. In fact, as discussed in Chen et al. (2024), the (asymptotically)
optimal way to aggregate information across pre-treatment periods and comparison groups under
Assumption PT-GT-all depend on the correlation structure of how the outcome changes over time
across different comparison groups. And an effective way to leverage this information consists of
constructing DiD estimators for ATT pg, tq’s that efficiently weigh several 2ˆ 2 DiD estimators for
the ATT pg, tq that use different comparison groups and different baseline periods. In sum, even
these more complex DiD estimators closely resemble what we have done in the 2 ˆ 2 design.

In the end, a natural question arises: Which kind of parallel trends assumption should one
use? This context-specific question is hard to answer, as each assumption has pros and cons.
For instance, Assumption PT-GT-all leads to more precise ATT pg, tq estimators because it uses
data from multiple pre-treatment periods and multiple comparison groups. As power is something
important when conducting causal inference, this is appealing. On the other hand, it imposes
parallel pre-trends, an assumption that is not required for identification of ATT pg, tq and that we
have not imposed in 2ˆT DiD designs (see our discussion of equation (5.3)). If pre-trends are not
parallel, then estimates of ATT pg, tq based on Assumption PT-GT-all can be biased.

The other extreme is to make Assumption PT-GT-Nev and only use comparison groups made
up of never-treated units. This avoids compositional changes in the comparison group over time,
does not restrict pre-trends, and identifies all the ATT pg, tq’s.28 On the other hand, never-treated
units may have remained untreated for reasons related to ∆Yi,tp0q. Non-expansion counties may be
too different from expansion counties for them to reflect the relevant counterfactual. This could be,
in part, justified after examining the differences in covariate levels and trends between treatment

28Without never-treated units, we cannot estimate ATT pg, tq for the last observed treatment date, which shapes
the feasible target parameters. For example, in our Medicaid expansion example, without the presence of never-
treated (by 2019) counties, we would not be able to estimate the treatment effects in 2019 (i.e., ATT pg “ 2015, t “

2019q.
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and control groups, as we saw in the discussion of Table 4. Also, depending on how widespread
treatment is, there may be too few never-treated units to obtain precise estimates.

We view Assumption PT-GT-NYT as a middle step that uses all not-yet-treated units as
a comparison group without restricting all pre-treatment trends to be parallel. It uses more
information than Assumption PT-GT-Nev, which can lead to gains in precision and helps to
incorporate covariates. While it uses less information than Assumption PT-GT-all, it is also less
susceptible to bias from violations of parallel pre-trends. For our Medicaid application, we favor
Assumption PT-GT-NYT, as we prefer to not impose parallel pre-trends from 2009 to 2014 or to
rely exclusively on comparisons to the set of states that have not expanded Medicaid as of 2024.

5.2.3 Estimators for staggered designs without covariates

The identification results for ATT pg, tq discussed in Section 5.2.2 suggest very simple and intuitive
estimators for the ATT pg, tq. Given the estimand that comes from the chosen parallel trends as-
sumption, the estimators replace the population (weighted) expectations with their sample analogs.
The principle is the same as in the 2 ˆ 2 setup of Section 3.3.

For example, under Assumption PT-GT-NYT, we can leverage (5.6) and form plug-in estima-
tors for ATT pg, tq using

zATT nytpg, tq “

řn
i“1 1tGi “ guωipYi,t ´ Yi,t“g´1q

řn
i“1 1tGi “ guωi

´

řn
i“1 1tGi ą tuωipYi,t ´ Yi,gt“´1q

řn
i“1 1tGi ą tuωi

. (5.9)

This simple estimator is what Callaway and Sant’Anna (2021) proposes when one uses the not-
yet-treated group as the comparison group.29

When Assumption PT-GT-Nev holds, it is straightforward to build on (5.5) and estimate
ATT pg, tq by

zATT neverpg, tq “

řn
i“1 1tGi “ guωipYi,t ´ Yi,t“g´1q

řn
i“1 1tGi “ guωi

´

řn
i“1 1tGi “ 8uωipYi,t ´ Yi,gt“´1q

řn
i“1 1tGi “ 8uωi

. (5.10)

This estimator was proposed by Callaway and Sant’Anna (2021) and Sun and Abraham (2021)
when using never-treated units as a comparison group, though Sun and Abraham (2021) arrive at
this using a fully saturated regression specification and estimating the regression coefficients βSA

g,e

with (weighted) least squares,

Yi,t “ θt ` ηi `
ÿ

g‰8

ÿ

e‰´1

βSA
g,e 1tGi “ gu1tGi ` e “ tu ` ϵi,t. (5.11)

It is straightforward to show that βSA
g,e “ zATT neverpg, g ` eq, emphasizing that (5.11) is just a way

to contrast sample means across groups and periods that respect Assumption PT-GT-Nev.

29Recently, Dube, Girardi, Jordà and Taylor (2024) show that one can also get ATT pg, tq estimates that are
equivalent to zATT nytpg, tq by using local projections. One can also get similar estimators using a “stacked DiD”
procedure akin to what Fadlon and Nielsen (2021), Deshpande and Li (2019), and Cengiz et al. (2019) have
implemented.
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When Assumption PT-GT-all holds instead, one can construct plug-in estimators for (5.8),
i.e.,

zATT avgpg, tq “

řn
i“1 1tGi “ guωipYi,t ´ Y i,tďg´1q

řn
i“1 1tGi “ guωi

´

řn
i“1 1tGi ą tuωipYi,t ´ Y i,tďg´1q

řn
i“1 1tGi ą tuωi

.

Alternatively, Wooldridge (2021) proposed to construct estimators for ATT pg, tq based on As-
sumption PT-GT-all using following “extended” TWFE specification

Yi,t “ θt ` ηi `
ÿ

g‰8

T
ÿ

s“g

βW
g,t1tGi “ gu1ts “ tu ` ϵi,t, (5.12)

where βW
g,t are estimated using (weighted) least squares. Wooldridge (2021) show that pβW

g,t consis-
tently estimate ATT pg, tq under Assumption PT-GT-all, though we do not know the exact way
that pβW

g,t combines pre-treatment periods and not-yet-treated units, i.e., we do not know the sta-
tistical estimand associated with βW

g,t. Wooldridge (2021) also shows that pβW
g,t is numerically the

same as the “imputation” estimators proposed by Gardner (2021), Liu et al. (2024), and Borusyak
et al. (2024) with balanced panel data (and these specifications do not have covariates).30

Overall, these different ATT pg, tq estimators highlight that we can leverage our DiD expertise
built in the 2ˆ2 setup to estimate heterogeneity-rich parameters ATT pg, tq’s. The exact estimator
we can use is shaped by the form of parallel trends. In our Medicaid application, we report in
Figure 6 our ATT pg, tq estimates based on Assumption PT-GT-NYT and (5.9). As we have four
eventually-expanded sets of counties based on whether Medicaid expanded in 2014, 2015, 2016, or
2019, we report four sets of event studies, one for each expansion group. For the 2014, 2016, and
2019 expansion groups, we find that Medicaid did not lead to significant changes in adult mortality
rates. For the 2015 expansion group, adult mortality rates rose after expansion. Regarding pre-
trends, Figure 6 suggests that there may be some non-negligible pre-trends for the 2016 expansion
group, though these are not statistically different from zero.

In Section 4, we highlighted that unconditional parallel trends such as Assumption PT-GT-
NYT may not be very plausible in our Medicaid context. A reason for this potential threat to our
identification strategy is that important determinants of changes in untreated adult mortality rates
are imbalanced across treatment and comparison groups. In such cases, one should interpret the
results in Figure 6 with great care. In addition, it is also important to highlight that, as indicated
in Table 1, the 2015, 2016, and 2019 expansion groups are relatively small and represent only 6%,
2%, and 3% of the US population, respectively. Thus, analyzing these groups separately may be

30Imputation procedures work in two-steps. The first step uses all untreated observations to run the re-
gressions Yit “ θt ` ηi ` ϵit using only data from the pi, tq pairs that satisfy this criterion, and get the fit-
ted values pYi,tp0q “ pθt ` pηi for all eventually-treated observations. The second step estimates ATT pg, tq by
zATT imppg, tq “

řn
i“1 1tGi“gupYi,t´ pYi,tp0qq

řn
i“1 1tGi“gu

. See Gardner (2021), Liu et al. (2024), and Borusyak et al. (2024) for
details. Note that the specification in (5.12) is similar to the Sun and Abraham (2021)’s specification (5.11), but
it omits the pre-treatment event-time dummies. This is justified because (5.12) imposes parallel pre-trends (As-
sumption PT-GT-all) while (5.11) does not (it effectively relies on Assumption PT-GT-Nev). Thus, in general, one
should not expect pβW

g,t to be equal to pβSA
g,t´g.
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“too noisy” and not representative of the overall effect for the US population. This does not mean
that these ATT pg, tq’s are not useful. They are actually an essential part of our DiD analysis, but
we may want to aggregate the cohorts to get more informative target parameters for the overall
treated population. We now turn to how to aggregate the ATT pg, tq’s and then discuss how to
incorporate covariates.

Figure 6: ATT(g,t)s For Each Expansion Group
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Notes: This figure shows the group-time ATT estimates (ATT pg, tq) in calendar time for the four treatment timing groups of counties
that expanded Medicaid before 2019, using not-yet-treated units as the comparison group, and their uniform confidence intervals at the
95% significance level. The outcome variable is the crude mortality rate for adults ages 20-64, and standard errors are clustered at the
county level. The vertical line represents the year before Medicaid expansion (i.e., g - 1) for the timing group.

5.2.4 Aggregating group-time average treatment effects

The previous section highlighted that, in many applications, estimating all ATT pg, tq’s precisely
and attaching policy-relevant interpretations to them may be challenging. Aggregating them into
a summary treatment effect measure therefore has clear benefits: it improves precision, reduces
the number of results, and yields a parameter that averages over all treated units like the ATT p2q

identified in 2 ˆ 2 designs.
Aggregation in staggered designs involves a notion of time (either calendar time t or event-time

e “ t ´ g), a length of time (how many periods to aggregate across), and group weights (so larger
treatment groups can “matter more” than smaller ones). Given some set of weights, it is simple to
average the ATT pg, tq building blocks into many kinds of summary parameters,

ATTaggte “
ÿ

g,t

wω,g,tATT pg, tq,
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where wω,g,t are “generic” (ω-weighted) group and time-specific (non-negative) weights that sum
up to one. Specific choices for the wω,g,t weights map to different ways to aggregate and present
interpretable causal effects in this kind of complex setting.

As highlighted in Section 5.1, an appealing feature of having access to data from multiple
periods is that we can assess how average treatment effects evolve with the time since treatment,
or event-time e “ t ´ g. Figure 6 displays event studies for each expansion group, and the
aggregation question is how to combine them into a single summary event study.

A basic observation about weighting is that we can only give positive weights to the ATT pg, tq’s
that we actually identified and estimated. Earlier treated groups have ATT pg, tq estimates for
later event-times by definition (and later treated groups have estimates for earlier pre-trends), so
it will not be possible to include every group in an aggregated event-study parameter at every
event-time. To see which ATT pg, tq’s will contribute to our event study, Figure 7 recenters our
ATT pg, tq estimates in event time instead of calendar time. That is, we plot ATT pg, g` eq against
e for each expansion group.

Figure 7: ATT(g, t) in Event Time
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Notes: This figure shows the group-time ATT estimates (ATT pg, tq) in relative event time for the four treatment timing groups of
counties that expanded Medicaid before 2019, using not-yet-treated units as the comparison group. The outcome variable is the crude
mortality rate for adults ages 20-64.

Based on Figure 7, we will take “vertical” weighted averages of each available ATT pg, g ` eq

for each event time e. For instance, to estimate an aggregate event study in event time 0 (a
measure of instantaneous treatment effects), we would average estimates of ATT p2014, 2014q,
ATT p2015, 2015q, ATT p2016, 2016q and ATT p2019, 2019q. When we are interested in event time
1, we would now average ATT p2014, 2015q, ATT p2015, 2016q, ATT p2016, 2017q. The same logic
applies to other event times.

When constructing timing-group weights at a given event-time, it is also important to account
for group sizes so that the resulting parameters equal sensible averages of treated units. Table
1 contains all the information necessary for this. The 2014 expansion group accounts for 80% of
treated adults in the groups we consider, while the 2016 expansion group accounts for 3.5%. If we
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would like our aggregate event study to be a representative summary of the dynamic effects among
treated counties, we should choose weights that are proportional to the treatment group size.

Putting these pieces together, we can formally state the exact summarized causal parameter
that highlights treatment effect dynamics in terms of event time:

ATTespeq “ Eω

„

ATT pG,G ` eq

ˇ

ˇ

ˇ

ˇ

G ` e P r2, T s, G ď T

ȷ

“
ÿ

gă8

wes
ω,g,eATT pg, g ` eq, (5.13)

where each weight wes
g,e gives the share of a group G “ g among treated units that have been

exposed to treatment for exactly e periods (the groups that we have data for event time e in
Figure 7), and is formally defined as

wes
g,e “ 1tg ` e ď T uPωpG “ g|G ` e ď T,G ď T q.

Note that ATTespeq gives the average treatment effect among the units that have been exposed to
treatment for exactly e periods, conditional on being observed having participated in the treatment
for that number of periods (the condition that G`e P r2, T s) and ever-participating in the treatment
by period T (G ď T ). One can also take a simple average of all available post-treatment event
times, ATTespeq, e ě 0, and report an overall ATT measure. See Callaway and Sant’Anna (2021)
for a discussion of alternative aggregations based on calendar time and groups.

Estimating ATTespeq is straightforward and, once again, relies on the plug-in principle: we
need to replace ATT pg, g ` eq with its sample analogs (that we already computed in Figure 6),
and use the relative adult population share of expansion group g among eventually-treated units
as estimates of the event study weights. Figure 8 reports our population-weighted estimates of the
event-study aggregation from event times -5 to 5, i.e., from 5 years before the Medicaid expansion
until 5 years after the Medicaid expansion. We also report pointwise and simultaneous confidence
intervals at the 95% significance level. Overall, the results suggest that Medicaid expansion has no
effect on adult mortality rates among counties that eventually experience a Medicaid expansion.
The pre-trends are also fairly close to zero, suggesting that our parallel trends assumption may be
reasonable.

We conclude this section by stressing that the way we have constructed the event study param-
eters in Figure 8 uses all available information from Figure 6. A potential drawback of this strategy
is that we do not always use the same set of groups across all event times. Practitioners usually
refer to this as imbalance in event time. For instance, the 2019 expansion group only contributes
to event time e “ 0, but not for e “ 1 or later event times. When compositional changes are a
concern, one can impose balance in event time and estimate a balanced event study aggregation:

ATTes,bal,re,espeq “ E
„

ATT pG,G ` eq

ˇ

ˇ

ˇ

ˇ

G ` e P r2, T s, G ` e P r1, T s, G ď T

ȷ

“
ÿ

gPGtreat

wes,bal
g,re,es

ATT pg, g ` eq, (5.14)
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Figure 8: G ˆ T Event Study Without Covariates
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Notes: This figure shows the event study estimates with staggered treatment timing using the doubly-robust estimation method from
Callaway and Sant’Anna (2021) using not-yet-treated units as the comparison group. The outcome variable is the crude mortality rate
for adults ages 20-64. The point estimate is reported by the circles, and both 95% point-wise (black) and simultaneous (red) confidence
intervals are reported with the vertical lines. We also report the simple average of all non-negative event times as a summary of the
overall ATT (together with their standard errors and 95% confidence interval).

where balanced event-time weights wes,bal
g,re,es

are given by

wes,bal
g,re,es

“ 1tg ` e ď T u1tg ` e ě 1uPωpG “ g|G ` e P r2, T s, G ` e P r1, T s, G ď T q.

Although intimidating, wes,bal
g,re,es

just measures the relative size of a particular treatment group
that was kept in the balanced data. We can interpret ATTes,bal,re,espeq as the average group-time
average treatment effect among units whose event time is equal to e and is observed to participate
in the treatment for at least e periods, and have at least e available pre-treatment periods (if e is
negative).31

5.2.5 Estimators for staggered designs with covariates

As the discussions in Section 5.2.2 made it clear, we can view the staggered DiD setups as a
collection of simpler 2ˆ2 DiD building blocks. A benefit of this interpretation is that, if a parallel
trends is only plausible after conditioning on covariates that are determinants of the changes in
untreated potential outcomes, we can straightforwardly leverage all the results discussed in Section
4 and identify, estimate and make inference about the ATT pg, tq’s using regression adjustment,
inverse probability weighting, or doubly robust methods.

Of course, to proceed in this manner, we would need to adopt conditioned on covariates versions
of Assumption PT-GT-Nev, PT-GT-NYT or PT-GT-all, as well as impose an overlap condition.
Given that all these are fairly similar to each other, here we only state an extension of Assumption
PT-GT-NYT and a strong overlap condition that can be used for all three cases.

31This discussion assumes that there are no “holes” in event-times for each treatment group. It is straightforward
to adjust the interpretation to those more complicated cases, as the same logic can be applied.
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Assumption CPT-GT-NYT (Conditional Parallel Trends based on not-yet-treated groups).
For every eventually treated group g, not-yet-treated group g1 and time periods t such that t ě g

and g1 ą t, and every covariate value Xi

EωrYi,tp8q ´ Yi,t´1p8q|Gi “ g,Xis “ EωrYi,tp8q ´ Yi,t´1p8q|Gi “ g1, Xis.

Assumption SO-GT (Strong overlap with staggered adoption). For every group g P G, the
conditional (weighted) probability of belonging to a treatment group g, given observed covariates
Xi that are determinants of untreated potential outcome growth, is uniformly bounded away from
zero and one. That is, for some ϵ ą 0 and for every group g P G and, ϵ ă PωrGi “ g|Xis ă 1 ´ ϵ.

Based on these identifying assumptions and building on the results in Sections 4 and 5.2.2, we
can follow the arguments in Callaway and Sant’Anna (2021) and establish that the post-treatment
ATT pg, tq’s are identified by the regression adjusted, inverse probability weighted, and doubly
robust estimands given by32

ATTrapg, tq “ EωrYi,t ´ Yi,t“g´1|Gi “ gs ´ Eω

”

EωrYi,t ´ Yi,t“g´1|Xi, Gi ą ts
ˇ

ˇ

ˇ
Gi “ g

ı

,

ATTipwpg, tq “ E
”´

wω,G“gpGiq ´ wω,g,tpGi, Xiq

¯

pYi,t ´ Yi,t“g´1q

ı

,

ATTdrpg, tq “ E
”´

wω,G“gpGiq ´ wω,g,tpGi, Xiq

¯´

Yi,t ´ Yi,t“g´1 ´ EωrYi,t ´ Yi,t“g´1|Xi, Gi ą ts
¯ı

,

where pwω,G“gpGiq and wω,g,GątpGi, Xiq are the analogs of the weights in (4.7) and are defined as

wω,G“gpGq “ ω1tG “ gu

M

Erω1tG “ gus,

wω,g,tpG,Xq “
ω1tG ą tu1tG ‰ gupω,g,tpXq

1 ´ pω,g,tpXq

O

E
„

ω1tG ą tu1tG ‰ gupω,g,tpXq

1 ´ pω,g,tpXq

ȷ

,

and pω,g,tpXq “ Eωr1tGi “ gu|X,1tGi “ gu ` 1tGi ą tu “ 1s denote the (weighted) probability of
belonging to the group g given covariates X and that the unit belongs to either to group g—the
treated group for the ATT pg, tq of interest—or the not-yet-treated group Gi ą t— the comparison
group.

Estimating the ATT pg, tqs follows exactly as in Section 4, and event study aggregations follow
from the arguments in Section 5.2.4. Figure 9 reports event study summary estimates incorporating
covariates into the Medicaid analysis. Similarly to Figure 8, the results also suggest no effect of
Medicaid on adult mortality among counties that expanded Medicaid by 2019. Given the point
estimates and uniform confidence interval, we can be reasonably confident that the treatment
effects are not greater than 6 or less than 5 deaths per 100,000 adults for the six-year period
following Medicaid expansion.

32Wooldridge (2021) propose alternative estimators for the ATT pg, tq that incorporate covariates and their
interactions with group and time dummies into (5.12). Although Borusyak et al. (2024) and de Chaisemartin and
D’Haultfoeuille (2020) also allow for covariates in their estimation procedure, they affect the outcome levels and
not their changes over time. Thus, to some extent, these procedures do not build on conditional parallel trends like
Assumption CPT-GT-NYT.
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Figure 9: G ˆ T Event Study With Covariates

Estimate (t ∈ {0, 5}) = 0.67
Std. Error = 2.67 

Conf. Int = [−4.55, 5.90]
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Notes: This figure shows the event study estimates with staggered treatment timing using the doubly-robust estimation method from
Callaway and Sant’Anna (2021). The outcome variable is the crude mortality rate for adults ages 20-64, and the covariates include the
percentage of the county population that is female, the percentage of the county population that is white, the percentage of the county
population that is Hispanic, the unemployment rate, the poverty rate, and county-level median income. The point estimate is reported
by the circles, and both 95% point-wise (black) and simultaneous (red) confidence intervals are reported with the vertical lines. We also
report the simple average of all non-negative event times as a summary of the overall ATT (together with their standard errors and
95% confidence interval).

5.3 Limitations of TWFE regressions

Our framework emphasizes building an estimator from 2 ˆ 2 components each of which targets
a well-defined ATT parameter, under a specific parallel trends assumption. The most common
estimator for staggered designs, a TWFE regression, comes instead from extending convenient
estimation tools that work well in the 2ˆ2 case. A TWFE specification that estimates a summary
treatment effect parameter is:

Yi,t “ θt ` ηi ` βtwfeDi,t ` ei,t. (5.15)

In this section, we abstract from weights.
A major breakthrough in recent DiD research has been to demonstrate two potentially large

problems with βtwfe (de Chaisemartin and D’Haultfoeuille, 2020; Goodman-Bacon, 2021; Sun and
Abraham, 2021; Borusyak et al., 2024). The primary issue comes from the fact that TWFE
implicitly uses already-treated comparison groups. Even if PT holds for all groups and all periods,
the resulting estimand can actually put negative weight on certain ATT pg, tq parameters. The only
way TWFE avoids the problem is if treatment effects do not change over time, a strong additional
assumption.

To isolate this issue, consider a setting with two time periods and three groups: a group that
enters treatment in the first period (Gi “ 1), a group that becomes treated in the second time
period (Gi “ 2), and a never treated group (Gi “ 0). This is a staggered design because group 1
and group 2 are treated at different times, but because there are only two time periods, we can
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re-write the TWFE specification as

∆Yi,2 “ ∆θt ` βtwfe∆Di,2 ` ∆ei,2

Because ∆Di,2 only takes two values—1 for units whose treatment status increases (Gi “ t), and 0
for units whose treatment status does not change (Gi “ t ´ 1 and Gi “ 0)—the TWFE estimand
is the following simple comparison of means:

βtwfe
“ Er∆Yi,2|∆Di,2 “ 1s ´ Er∆Yi,2|∆Di,2 “ 0s (5.16)

“

´

Er∆Yi,2|Gi “ 2s ´ Er∆Yi,2|Gi “ 0s

¯

p1 ´ w1q `

´

Er∆Yi,2|Gi “ 2s ´ Er∆Yi,2|Gi “ 2s

¯

w1

where w1 “
p1

p1`p0
and pg “ P pG “ gq is group g’s share of units. The TWFE coefficient, in this

case, is a weighted average of two DiD terms that use the already-treated units or the never-treated
units as comparisons. We have already discussed how under PT between group Gi “ 2 and never-
treated units, the first term in pβtwfe equals ATT p2, 2q. But what about the second term with the
already-treated comparison group? It turns out that by subtracting a trend in treated outcomes,
this type of estimator generally equals a combination of treatment effects for both groups:

Er∆Yi,2|Gi “ 2s ´ Er∆Yi,2|Gi “ 2s “ ATT p2, 2q ´

´

ATT p1, 2q ´ ATT p1, 1q

¯

(5.17)

The DiD estimand with an already treated comparison group thus equals:

βtwfe
“ ATT p2, 2q ` ATT p1, 1qw1 ´ ATT p1, 2qw1 (5.18)

The ATT p1, 2q building block receives negative weight in the overall TWFE estimand unless there
are no treatment effect dynamics (ATT p2, 1q “ ATT p2, 2q). In this example, the problem is easy
to fix: drop the always-treated units and target ATT p2, 2q. With multiple periods, however, the
problem is more complex.

There are two primary results regarding TWFE estimators for general staggered timing de-
signs. Goodman-Bacon (2021) decomposes the TWFE estimator into a weighted average of all
possible 2 ˆ 2 DiD comparisons between pairs of groups and time periods during which one group
enters treatment and the other does not. The terms in his decomposition are not two-period
ATT pg, tq-type estimators; they aggregate over the relevant pre- and post-periods just like βOLS

from (5.4) does. They include many comparisons to already-treated units like (5.17). This me-
chanical decomposition always has positive weights, and they are larger for larger groups and for
groups treated closer to the middle of the panel, which have a larger variance of Di,t conditional
on the fixed effects. This result shows how TWFE estimators actually function and creates a clear
link to the estimation approaches we outlined above for summary parameters. Both are averages
of 2 ˆ 2 DiD terms, but they differ in which comparisons they use and how they aggregate.

Moving from a decomposition of the estimator to a decomposition of the estimand further
clarifies why the mechanics of TWFE likely do not identify a desirable parameter, even if parallel
trends holds. Unfortunately, in staggered designs, TWFE estimands do not have a clear causal
interpretation under PT-type assumptions alone, because they incorporate many already-treated
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comparisons like the ones in (5.18) (Goodman-Bacon, 2021; de Chaisemartin and D’Haultfoeuille,
2020; Borusyak et al., 2024; Imai and Kim, 2021; Strezhnev, 2018; Sun and Abraham, 2021). This
will tend to bias βtwfe away from the sign of ATTavg, and βtwfe can even have the opposite sign
of ATTavg (Baker et al., 2022). It may appear that a more flexible regression specification could
solve this problem, but Sun and Abraham (2021) show that a TWFE event study specification
suffers from a similar bias when the dynamics of the ATT pg, tq’s differ across cohorts. Moreover,
the “variance-weighting” feature of OLS means that βtwfe has non-intuitive weights even when
ATT pg, tq “ ATT pgq.

While TWFE remains common, it has well-understood, potentially serious, and easily remedied
problems, and we do not recommend using it. In many cases, especially with many untreated units
or minimal treatment effect dynamics, TWFE estimates may be similar to those derived from the
theoretically grounded estimators discussed above. The only way to be sure, however, is to estimate
both. In that case, it is unclear why a researcher would not report the estimates from a procedure
motivated by a desirable target parameter and a credible PT assumption.

6 Conclusion

The starting point of this paper was a 2ˆ2 DiD design that researchers have been using for almost
200 years. The end point was a design with five treatment groups, 11 years of data, six covariates,
three types of parallel trends assumptions, and four estimation techniques. Our fundamental
message is that without understanding how complex designs are built up from simpler ones, it is
exceedingly difficult to navigate all the empirical tools now available for DiD designs. This lesson
applies not only to the design details we considered here—weighting, covariates, and staggered
designs—but to any DiD design.

The forward-engineering philosophy we followed in this paper suggests a set of steps that
researchers can follow in any DiD study:

Step 1. Define target parameters. Adopt a potential outcomes notation that fits the study’s specific
setting and use it to define causal target parameters that answer the study’s motivating
question. Building block causal parameters usually aggregate across units using (conditional)
weighted averages, and summary target parameters aggregate across the building blocks.
This step fixes the study’s goals in terms of causal quantities and facilitates comparisons
with related studies.

Step 2. State (formally) the identification assumptions. DiD studies leverage parallel trends assump-
tions, but they also rely on no-anticipation and, in some cases, overlap conditions, or more.
Be explicit about which form of these assumptions is required for identification in the study.
Engage with the theoretical arguments necessary for them to hold and generate appropriate
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empirical evidence, such as pre-treatment differential trends, that can falsify or (indirectly)
support their plausibility.

Step 3. Justify the estimation method. In some DiD designs, estimation is as simple as replacing
population expectations with sample means. In others, such as conditional DiD designs,
estimation involves choosing econometric techniques (e.g., a regression adjustment, inverse
probability weighting, or doubly robust procedure) to map theoretical quantities to estimable
sample quantities. Each of these strategies relies on additional modeling restrictions that
should be stated clearly and respect the identification assumptions.

Step 4. Discuss sources of uncertainty. Statistical inference procedures for DiD designs stem from
basic assumptions about where randomness comes from in a given design. Some researchers
may adopt a sampling approach to inference, whereas others may be more comfortable with
a design-based perspective. It is important to discuss what variables of the model are be-
ing treated as fixed and what variables are considered random, as well as to use inference
techniques that are compatible with the model structure and assumptions.

Step 5. Estimate. Steps 1-4 provide a specific structure for using data to estimate the causal param-
eters of interest.

Step 6. Conduct sensitivity analysis. A clear statement of the identification and estimation assump-
tions also facilitates a clear statement of what violations of those assumptions might mean.
No study is robust to all the ways its assumptions may fail, but a good study should be
robust against likely violations of plausible magnitudes. Combine context-specific knowledge
about how the assumptions from Step 2 might be violated and by how much with the struc-
ture of the estimator from Step 3 to evaluate how much the DiD estimates vary if the key
identification assumptions are not exactly true.

Step 7. Conduct heterogeneity analysis. Sometimes aggregate parameters defined in Step 1 mask
important heterogeneity, in which case the forward-engineering approach simply suggests
targeting sub-group parameters as well. This can include variation in parameters over time,
between groups of units with different characteristics, or across different sources of treatment
variation. Be clear about which types of heterogeneous effects are relevant and how they are
identified and estimated.

Step 8. Keep learning. DiD is not the only or even the most plausible research design in all settings; it
is just one of many causal inference techniques. If the assumptions required for a DiD analysis
appear implausible ex ante or are refuted by evidence or non-robustness in practice, then
explore different designs whose assumptions may be more plausible. If existing DiD methods
do not provide enough guidance, then use a forward engineering approach to deduce what
advances would help.
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Some researchers may still prefer to use standard regression tools to conduct DiD studies.
The properties and pitfalls of some popular regression specifications are now well understood, and
one can easily explain how this choice fits with (and perhaps satisfies) the steps above. But using
simple regressions in any DiD-type setting is an implicit choice to reverse-engineer a research design
from the statistical method, rather than forward-engineer a reliable estimator from a substantive
question and transparent assumptions. Ultimately, important questions and credible identification
strategies should guide DiD analyses (regression-based or not), not the other way around.

Although this paper is by no means an exhaustive guide to DiD practice, the eight steps above
are a rigorous framework for tackling all the DiD topics that we did not cover. The Appendix briefly
discusses DiD methods for (a) treatments that turn on and off over time, (b) continuous and multi-
valued treatments, (c) triple differences, (d) distributional parameters, and (e) repeated cross-
section or unbalanced panel data. While each of these designs differs from what we covered in the
main text, a forward-engineering approach that moves from defining parameters and assumptions,
to settling on estimation and inference techniques, to probing robustness, applies equally to all
of them. While the specifics of any given DiD analysis may change across research questions,
treatment variables, econometric techniques, and data structures, the principles by which one can
conduct reliable and transparent causal inference stay the same.33

33There are other DiD topics of interest that we do not cover, including fuzzy DiD and instrumented DiD designs
(de Chaisemartin and D’Haultfoeuille, 2018; Miyaji, 2024), nonlinear DiD models (Wooldridge, 2023; Tchetgen Tch-
etgen, Park and Richardson, 2024), issues related to few clusters (Roth et al., 2023, Section 5), and situations with
multiple treatments (de Chaisemartin and D’Haultfoeuille, 2023a; Yanagi, 2023). We also do not cover some meth-
ods that address violations of parallel trends (Freyaldenhoven et al., 2019; Arkhangelsky, Athey, Hirshberg, Imbens
and Wager, 2021; Callaway and Karami, 2023; Imbens, Kallus and Mao, 2021), or setups that impose treatment
timing being as-good-as-random (Athey and Imbens, 2022; Roth and Sant’Anna, 2023a; Arkhangelsky, Imbens, Lei
and Luo, 2024).

55



List of Acronyms

Acronym Definition
2 ˆ 2 Two-Group Two-Time-Periods DiD
2 ˆ T Two-Group T -Time-Periods DiD
ACA Affordable Care Act
ATT Average Treatment Effect on the Treated
CPT Conditional Parallel Trends
CPT-GT-NYT Conditional Parallel Trends Based on Not-Yet-Treated Groups
DiD Difference-in-Differences
DR Doubly Robust
ETWFE Extended Two-Way Fixed Effects
IPW Inverse Probability Weighted
NA No Anticipation
NA-S No Anticipation with Staggered Treatment Timing
OLS Ordinary Least Squares
PT Parallel Trends
PT-ES Parallel Trends Event Study
PT-GT-all Parallel Trends for Every Period and Group
PT-GT-Nev Parallel Trends Based on Never-Treated Groups
PT-GT-NYT Parallel Trends Based on Not-Yet-Treated Groups
RA Regression Adjustment
SO Strong Overlap
SO-GT Strong Overlap With Staggered Adoption
TWFE Two-Way Fixed Effects
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A Some additional DiD-related procedures

This section discusses some important DiD-related topics that we did not cover in our main text.
These discussions are short by design, and we focus on providing the main ideas related to chal-
lenges and solutions specific to the problem. We abstract from weights and use Er¨|¨s to denote
(conditional) expectations.

A.1 Setups with treatment turning on and off

Our main text focuses on setups where treatment remains in place from the period it begins until
the end of the sample period, but in practice, some treatments turn on and off over time. This is
the setting tackled by de Chaisemartin and D’Haultfoeuille (2020, 2023a), Imai, Kim and Wang
(2023), and Liu et al. (2024).

To tackle this problem from first principles, we need to augment the potential outcomes to
reflect the richer notion of treatment sequences. Following Robins (1986), let Yi,tpdq denote the
potential outcome for unit i at time t if this unit received the T -dimensional treatment sequence
d P t0, 1uT . For simplicity, let’s say that T “ 3 and that no unit is treated in the first period.
In this case, we have four treatment sequences (or histories) that define four potential outcomes
for each unit: Yi,tp0, 0, 0q, Yi,tp0, 0, 1q, Yi,tp0, 1, 0q and Yi,tp0, 1, 1q. We then define treatment groups
based on treatment sequences: G “ d0 ” p0, 0, 0q (never-treated), G “ d1 ” p0, 0, 1q (treated in
the third period), G “ d2 ” p0, 1, 1q (treated in the second and third period), and G “ d3 ”

p0, 1, 0q (treated only in the second period). In general, we would have as many groups as we
have different (realized) treatment sequences. Recall that in a staggered timing design with an
absorbing treatment, treatment timing fully characterizes a treatment sequence.

Once potential outcomes and groups are well-defined, one can move to parameters of interest.
Similar to the staggered treatment setup in Section 5.2, we consider group-and-time specific ATTs
as building blocks, except that groups are now based on more complex treatment sequences. Let 0
denote a T-dimensional vector of zeros. One intuitive building block parameter on which to base
a DiD analysis is

ATT pd, tq “ ErYtpdq ´ Ytp0q|G “ ds,

the average treatment effect at time period t of being exposed to treatment sequence d instead of
never being exposed to treatment, among units that received treatment sequence d.34

Next, one needs to establish identification for the parameters, and propose appropriate estima-
tors and inference procedures. Following similar arguments to those in Section 5.2, a DiD approach
to this problem would involve imposing a parallel trends assumption (potentially conditional on
covariates) and a no-anticipation assumption to establish that the ATT pd, tq’s are identified. If

34One could also adopt alternative building blocks not discussed here, such as the average effect of treatment
lasting one period longer or a treatment spell of a given length beginning one period later.
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each treatment group is sufficiently large, one could proceed in a similar fashion as the staggered
setup, comparing average outcome paths for a given sequence to the average outcome path for
never-treated (or not-yet-treated) units. One can also aggregate these different ATT pd, tq to form
different summary parameters.

In practice, however, it is often the case that the number of treatment groups is large and each
group is small. This essentially creates a “curse of dimensionality” problem: there are too many
building block parameters defined for too-small groups to be estimated reliably. In such cases,
additional assumptions that limit treatment effect dynamics (or how past treatments affect future
outcomes) are often imposed, and different aggregated summary parameters are usually targeted.
We provide a brief overview of several different solutions that have been proposed to address this
issue.

de Chaisemartin and D’Haultfoeuille (2020) imposes a “no-carryover” assumption that implies
that past treatments do not affect future outcomes, i.e., that treatment effects in a given period
last only during that period. With such an assumption (in addition to parallel trends and a no-
anticipation assumption), they propose DiD estimators for an instantaneous average treatment
effects parameter by comparing currently treated units with untreated units. Imai et al. (2023)
adopt a similar approach, though they impose a limited-carryover assumption where treatments
may last for ℓ periods (with ℓ specified by the researcher). They then propose estimators for an
average treatment effect of switching into treatment in period t among units that experience the
policy change in period t, and share the same treatment history over the previous k periods; see Liu
et al. (2024) for a related procedure. Finally, de Chaisemartin and D’Haultfoeuille (2023a) avoid
making assumptions related to carryover effects and extend the DiD framework in de Chaisemartin
and D’Haultfoeuille (2020) to allow for treatment effect dynamics. The way they proceed is to
first “staggerize” treatment sequences according to first-time of treatment exposure, compute a
staggered DiD procedure for this “intention-to-treat” type parameter, and normalize them by a DiD
estimate based on the number of treated periods. A potential challenge with de Chaisemartin and
D’Haultfoeuille (2023a)’s approach is the interpretability of their proposed summary parameter,
though we should acknowledge that this is a complex setup.

One important takeaway is that comparing these DiD procedures that allow for treatments to
turn on and off may be challenging, as they target different causal parameters of interest, and
practitioners should be aware of the different assumptions and limitations. We refer the reader to
de Chaisemartin and D’Haultfoeuille (2023b) and Liu et al. (2024) for additional discussions on
these types of DiD estimators.

A.2 DiD setups with continuous or multi-valued treatments

Our paper focuses on binary treatments, but many treatments take multiple values or are even
continuous. A number of recent papers have studied this particular type of treatment design; see,
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e.g., Callaway, Goodman-Bacon and Sant’Anna (2021, 2024) and de Chaisemartin, D’Haultfoeuille,
Pasquier and Vazquez-Bare (2024a); de Chaisemartin, D’Haultfœuille and Vazquez-Bare (2024b).
Here we focus on a two-period setting in which no unit is treated in period one and some units
receive a treatment with varying intensities (or doses) in period two. Most of the key results that
distinguish multi-valued from binary treatments are evident with two periods (Callaway et al.,
2024).

We now need to define potential outcomes that reflect varying treatment intensity. We denote
Yi,tp0, dq as potential outcomes for unit i in period t if they are untreated in period one and receive
treatment dosage d in period two. As we focus on setups where all units are untreated in period
one, we simplify notation and index potential outcomes by treatment intensity in period two, i.e.,
Yitpdq “ Yi,tp0, dq. An important feature is that d is not restricted to t0, 1u and can take on richer
treatment intensities instead. We denote the treatment dosage for unit i as Di in period two and
stress that, in this context, our notion of the treatment group is tied to units’ treatment dosage,
i.e., groups are defined by their treatment dosage in period 2.

A multi-valued treatment defines several different types of causal parameters that may be of
interest. For instance, dose-specific average treatment effect parameters such as

ATT pd|d1
q “ ErYt“2pdq ´ Yt“2p0q|D “ d1

s and ATEpdq “ ErYt“2pdq ´ Yt“2p0qs,

reflect the average effect of dose d relative to no treatment. ATT pd|d1q is the average treatment
effect for units that experienced dose d1; when d1 “ d it is the ATT among units that received dose
d. ATEpdq is defined analogously, except that it is the effect on the overall population. Of course,
one can also aggregate these dose-specific parameters to form more precisely estimable summary
quantities; see, e.g., Callaway et al. (2021).

ATT pd|dq and ATEpdq provide average treatment effects in levels and so one reason why they
vary could be because d itself varies. To account for the differences in d, one may be interested in
“per-dosage” effects

ATTpdpd|d1
q “

ATT pd|d1q

d
and ATEpdpdq “

ATEpdq

d
.

One can also aggregate these parameters across dosages to analyze ErATTpdpD|Dq|D ą 0s, an av-
erage treatment effect among treated (or, more generally, among switchers). One can also consider
weighted averages of these to learn about ErATT pD|Dq|D ą 0s{ErD|D ą 0s; see de Chaisemartin
et al. (2024a) for a general discussion about such target parameters.

Finally, researchers are often interested in the causal effect of a marginal increment in the dose.
This notion is the average causal response (ACR), similar to Angrist and Imbens (1995), defined
as follows (when the dose is absolutely continuous):

ACRT pd|d1
q “

BATT pl|d1q

Bl

ˇ

ˇ

ˇ

ˇ

l“d

“
B ErYt“2plq|D “ d1s

Bl

ˇ

ˇ

ˇ

ˇ

l“d

and ACRpdq “
BATEpdq

Bd
“

B ErYt“2pdqs

Bd
.

ACRT pd|dq equals the derivative of the average potential outcome in period two for units that
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received dose d evaluated at d—this is equivalent to the derivative of ATT pl|dq with respect to l,
evaluated at l “ d. ACRpdq can be interpreted analogously.35

The relevant questions pertain to (a) the types of assumptions needed to impose to identify
these parameters, (b) how to estimate and make inferences about these parameters of interest once
identification is established, (c) how to summarize treatment effect heterogeneity across doses to
generate interpretable aggregated causal parameters, and whether traditional regression specifi-
cations based on TWFE recover a sensible and easy-to-understand causal parameter of interest.
These questions are addressed in detail by Callaway et al. (2021) and de Chaisemartin et al.
(2024a).

Callaway et al. (2021) highlights how, when no units are treated in period one, identification
and estimation of ATT pd|dq’s (or their functionals) follows the binary case. They propose flexible
nonparametric estimators for the ATT pd|dq curve—the relationship between outcome changes
(minus the average change for untreated units) and the dose d, making it possible to visualize and
make inference about treatment effect heterogeneity across dosages. They also propose estimators
that aggregate across dosage values and can be more precisely estimated. The identification of
causal response parameters or ATE-type parameters, however, requires a stronger version of parallel
trends that holds for potential outcomes at non-zero treatment doses. Under these strong parallel
trends (and no-anticipation), they discuss estimation and inference procedures for the ACR curves
and their summary measures.36

de Chaisemartin et al. (2024a) consider the setup where units are already exposed to different
levels of treatment in period one. They discuss how one can identify causal quantities that gener-
alize ATTpdpd|d1q to this more complex setup when (a) a sizable number of units do not change
treatment dosage over time (stayers), and (ii) there is no-carryover from past treatment to future
outcomes. They propose estimation and inference procedures for aggregated parameters akin to
ErATTpdpD|Dq|D ą 0s and ErATT pD|Dq|D ą 0s{ErD|D ą 0s.

Lastly, these papers target different causal parameters, put more emphasis on different DiD
designs, and, therefore, should be viewed as complements rather than substitutes. In our view, DiD
with continuous treatment is another area in which more methodological research is warranted.
See Callaway et al. (2021) and de Chaisemartin et al. (2024a) for a more thorough discussion of
many other cases.

35For discrete treatments, ACR’s are defined in a similar way but with a slightly different notation to ac-
commodate the discreteness of d, i.e., ACRT pdj |dkq “ ErYt“2pdjq ´ Yt“2pdj´1q|D “ dks, and ACRpdjq “

ErYt“2pdjq ´ Yt“2pdj´1qs.
36Interestingly, they also show that commonly used TWFE regression specifications are too rigid to lead to easy-

to-interpret causal parameters of interest. In fact, they show that one can provide several different decompositions
of the TWFE treatment coefficient depending on the specific causal parameter being used as a building block for the
analysis, though every decomposition considered by them has some issues related to negative-weighting, additional
“bias” terms, or non-interpretable weights that can distort inference. They emphasize that all this can be easily
resolved by adopting the forward-engineering approach.
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A.3 Triple Differences

The causal interpretation of DiD estimates depends on the plausibility of their identification as-
sumptions, which involve a no-anticipation and a parallel trends condition. In some applications,
however, these assumptions may not hold, e.g., when the trends of average untreated outcomes
among men and women vary across treatment groups. In these cases, a common empirical prac-
tice is to attempt to model these violations of parallel trends directly or to conduct sensitivity
analysis (Freyaldenhoven et al., 2024; Rambachan and Roth, 2023). In some specific treatment
designs in which treatment is rolled out to different units or groups (e.g., states), but is targeted
to a specific subset (partition) of the population (e.g., women), it is possible to relax DiD-type
parallel trends such that partition-specific and group-specific violations of parallel trends are al-
lowed. Such setups are often referred to as Triple Differences (DDD). Since its introduction by
Gruber (1994), DDD has become very popular among empirical researchers—see Olden and Møen
(2022) for documentation. In this section, we provide a brief overview of the target parameters
and identifying assumptions in DDD. We also highlight that, contrary to conventional wisdom,
DDD procedures cannot generally be expressed as the difference between two DiD, especially when
parallel trends assumptions are only plausible after conditioning on covariates or when treatment
adoption is staggered. This discussion borrows heavily from Ortiz-Villavicencio and Sant’Anna
(2025).

We start our analysis by discussing potential outcomes and treatment design. As we focus
on binary treatments (with potential staggered adoption), the potential outcome is the same as
discussed in the main text, with Yi,tpgq denoting the potential outcome for unit i in time t if first
exposed to treatment in period g. In DDD setups, a unit i is exposed to treatment in period t if
(i) it belongs to a group (e.g., state) that enabled treatment in period g and t is a post-treatment
period, t ě g, and (ii) it belongs to the subset of the population that qualifies (or is eligible) for
treatment (e.g., women). Let S P S Ď t2, ..., T u Y t8u denote the time each group (e.g., state)
enables the policy/treatment, with the notion that S “ 8 if the policy is not enabled in the
observed time frame. We also denote the partition of the population that (eventually) qualifies
for the treatment by Q with Qi “ 1 if unit i is (eventually) eligible for treatment and Qi “ 0

otherwise. With these notations, we can define the treatment groups Gi according to the first time
a unit i is exposed to treatment, i.e., Gi “ Si if Qi “ 1 and Gi “ 8 if Qi “ 0.37

Similar to standard DiD designs, DDD is interested in the ATT pg, tq-type parameters discussed
in Section 5.2.1. Given the particular structure of the DDD problem, we can write ATT pg, tq’s as

ATT pg, tq ” ErYi,tpgq ´ Yi,tp8q|Gi “ gs “ ErYi,tpgq ´ Yi,tp8q|Si “ g,Qi “ 1s,

to stress that it measures the average treatment effect at time period t of first being exposed
to treatment in period g versus not being exposed to treatment, among units that are actually

37Note that when all units are eligible for treatment, we have Gi “ Si, getting us back to a (staggered) DiD
setup.
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exposed to treatment in period g, i.e., units that are in groups that the policy was first enabled
in period g and that qualify for treatment. One can also analyze aggregations of these ATT pg, tq

parameters to form causal summary parameters that can be more precisely estimated and highlight
treatment effect heterogeneity in some specific directions. This would follow the exact same steps
as we discussed in Section 5.2.4, once again highlighting the importance of our forward-engineering
approach.

Identifying these causal parameters involves a no-anticipation assumption and a (conditional)
parallel trends assumption. Assumption NA-S can be recycled here, as DDD has the same empirical
content as DiD when it comes to no-anticipation. The parallel trends assumption, though, needs
to be adjusted as an empirical appeal of DDD is to allow for violations of Assumption PT-GT-all,
or the other PT variations discussed in Section 5.2. Here, we consider a variation of Assumption
PT-GT-all that holds only after conditioning on covariates and allows for some partition-specific
and group-specific non-parallel trends.

Assumption DDD-PT-GT-all (DDD-Parallel Trends for every period and group). For every
group s and s1 and time periods t, with probability one,

E rYtp8q ´ Yt´1p8q|S “ s,Q “ 1, Xs ´ E rYtp8q ´ Yt´1p8q|S “ s,Q “ 0, Xs

“

E rYtp8q ´ Yt´1p8q|S “ s1, Q “ 1, Xs ´ E rYtp8q ´ Yt´1p8q|S “ s1, Q “ 0, Xs .

When there are only two periods, t “ 1, 2, two groups, S P t2,8u, and covariates play no role
in terms of identification, i.e., Assumption DDD-PT-GT-all holds without X (or, equivalently,
with X “ 1 for all units), Olden and Møen (2022) show that one can identify ATT p2, 2q as the
difference of two DiD estimands, i.e.,

ATT p2, 2q “ E rYt“1 ´ Yt“1|S “ 2, Q “ 1s ´ E rrYt“1 ´ Yt“1|S “ 2, Q “ 0s

´
`

E rYt“1 ´ Yt“1|S “ 8, Q “ 1s ´ E rrYt“1 ´ Yt“1|S “ 8, Q “ 0s
˘

.

Estimation and inference would be straightforward, as one could use the analogy principle or a
two-way fixed effects regression with triple interactions—see Olden and Møen (2022) for details.

Ortiz-Villavicencio and Sant’Anna (2025) show that DDD estimands cannot be written as the
difference of two DiD estimands when covariates are important for identification (i.e., when parallel
trends is only plausible after accounting for covariate-specific trends), or when treatment adoption
is staggered over time and one wants to use not-yet-treated units as a comparison group (as is
commonly done in DiD setups). They show how ignoring these considerations, and proceeding
as if DDD was indeed just a difference of two DiDs, can lead to severely biased estimates for
the ATT pg, tq’s. Ortiz-Villavicencio and Sant’Anna (2025) also shows how one can avoid these
issues by adopting a forward-engineering approach to the DDD problem. They propose regression-
adjusted, inverse probability weighting, and doubly robust estimators for DDD setups that can
reliably recover ATT pg, tq and their associated summary parameters under mild assumptions. The
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paper discusses using multiple comparison groups to generate more precise estimates than simply
using a single comparison group. Related, Strezhnev (2023) discusses several limitations of common
two-way fixed effects regression specifications commonly used for DDD analysis.

Sometimes researchers use the term triple differences to mean different things, and often use
different identification assumptions to estimate these different quantities. See, e.g., Caron (2025)
for a discussion on using a triple difference strategy to estimate treatment effect heterogeneity. We
recommend that practitioners be transparent about target parameters, research designs, and iden-
tification assumptions to allow the research community to understand the goals and the differences
between DDD procedures.

A.4 Distributional DiD procedures

Our paper focuses on learning about average treatment effects in various DiD setups. However,
approaches that embrace heterogeneity can also target quantities that describe heterogeneity other
than average treatment effect parameters. In some settings, researchers may want more information
about the distributional impacts of treatment participation. For instance, if a policymaker faces two
different labor market programs with very similar average effects on earnings, they may prefer the
one that potentially has a higher impact on the lower tail of the income distribution. Difference-in-
Differences-type strategies can also be used to identify, estimate, and make inferences about various
distributional features of the outcome of interest. This area has received a substantial amount of
methodological consideration by econometricians in recent years; see, e.g., Athey and Imbens
(2006), Bonhomme and Sauder (2011), Callaway, Li and Oka (2018), Callaway and Li (2019),
Roth and Sant’Anna (2023b), Ghanem, Kédagni and Mourifié (2023a), Fernández-Val, Meier, van
Vuuren and Vella (2024b), and references therein. For some empirical literature using distributional
DiD procedures, see, e.g., Meyer, Viscusi and Durbin (1995), Finkelstein and McKnight (2008),
and Cengiz et al. (2019), among many others.

An analysis of distributional quantities does not require different potential outcomes notation
relative to Section 5.2; it just targets functionals of the potential outcome distributions other
than their means. The first thing to notice is that there are several types of distributional causal
parameters in the treated group that one may care about. The unique feature of them is that they
are all functionals of FYtpgq|G“gpyq “ PpYtpgq ď y|G “ gq and FYtp8q|G“gpyq ” PpYtp8q ď y|G “ gq.
Examples of such functionals include distributional treatment effects in time period t among units
first treated in period g (denominated in probability units),

DTT py|g, tq “ FYtpgq|G“gpyq ´ FYtp8q|G“gpyq,

quantile treatment effects in time period t among units first treated in period g (denominated in
outcome units),

QTT pτ |g, tq “ F´1
Ytpgq|G“gpτq ´ F´1

Ytp8q|G“gpτq,
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where F´1
Ytpgq|G“gpτq “ infty : FYtpgq|G“gpyq ě τu denotes the τ -quantile of Ytpgq among units in

group G “ g, and F´1
Ytp8q|G“gpτq is defined analogously. Other functionals related to inequality

measures can also be obtained; see, e.g., Firpo and Pinto (2016) for a discussion on this topic.
To make inferences about these different causal parameters, one needs to identify FYtp8q|G“gpyq

and FYtpgq|G“gpyq. Identification of FYtpgq|G“gpyq is usually non-controversial, as we can use data
from units in group G “ g to learn about the distribution of Ytpgq. The main challenge is re-
lated to how to learn the counterfactual distribution FYtp8q|G“gpyq from the data. This is where
different DiD-type procedures differ, as each paper in this literature relies on different and of-
ten non-nested identification assumptions that allow them to identify FYtp8q|G“gpyq. Given the
space constraints, we do not provide explicit and detailed discussion about how these different
DiD-related distributional procedures function. However, all distributional DiD estimators share
our forward-engineering approach; they clearly state their identification assumptions and target
parameters and then provide estimators that recover well-defined causal quantities. We also note
that most distributional DiD methodological papers focus on two-period and two-group setups.
However, it is straightforward to build similar arguments to those in Section 5.2 to extend the de-
signs to more general settings, which is again another benefit of the forward-engineering approach
to causal inference.

We close this section by noting that there exist other types of distributional parameters of
interest related to the distribution of the treatment effects in period t among the units in group
g, PpYtpgq ´ Ytp8q ď y|G “ gq. In general, such causal quantities cannot be point-identified, as
discussed in Heckman, Smith and Clements (1997b), Fan and Yu (2012) and Callaway (2021).
However, often one can still partially identify such policy-relevant parameters under different re-
strictions. We refer the reader to Callaway (2021) for a more detailed discussion of this topic.

A.5 Repeated cross-sections and unbalanced panel data

An appealing feature of DiD procedures is that, although helpful, a balanced panel is not a re-
quirement for DiD analyses, which can also be deployed with repeated cross-sectional data or
unbalanced panels. Indeed, as discussed in Section 3.3 and made explicit in equation 3.6, the
2ˆ 2 building block in unconditional DiD analyses only involves averages that are group and time
specific, and does not require the same unit to be observed in all periods. As discussed in Callaway
and Sant’Anna (2021), the same applies to unconditional staggered adoption setups, and one need
not enforce a balanced panel even within each subset of the data used to estimate the ATT pg, tq

building blocks. One caveat is that the interpretation of the parameter of interest may change,
which we discuss more below.

When covariates are available and play an important role in the plausibility of the identifica-
tion assumptions, the differences between DiD with a balanced panel and repeated cross-sections
(or unbalanced panel) are subtle, can be practically important, and are often not discussed in
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methodological papers. The gist of the problem relates to potential compositional changes over
time. Most DiD papers that rigorously discuss repeated cross-section setups, including Abadie
(2005), Sant’Anna and Zhao (2020), and Callaway and Sant’Anna (2021), rule out compositional
changes by assuming that the joint distribution of covariates and treatment groups is invariant
over time, a stationarity-type assumption. However, this may not be warranted in empirical ap-
plications, and erroneously imposing this additional assumption can lead to biases (Hong, 2013;
Sant’Anna and Xu, 2023). On the other hand, when this stationarity assumption is justified and
correctly used, the gains in power when conducting inference for DiD parameters can be noticeable
(Sant’Anna and Xu, 2023). In what follows, we use the 2 ˆ 2 setup to explain how compositional
changes can complicate the analysis and why ruling it out leads to a gain in precision.

To see how issues related to compositional changes affect the analysis, let us first assume that
there are no compositional changes and that the stationarity assumption is valid. In this case, the
average treatment effect on the treated in period two (post-treatment) can be written as

ATT p2q ” ErYi,t“2p1q|Di “ 1s ´ ErYi,t“2p0q|Di “ 1s

“ ErYi,t“2p1q|Di “ 1, Ti,t“2 “ 1s ´ ErYi,t“2p0q|Di “ 1, Ti,t“2 “ 1s

“ ErYip1q|Di “ 1, Ti,t“2 “ 1s ´ ErYip0q|Di “ 1, Ti,t“2 “ 1s, (A.1)

where Ti,t is an indicator if unit i is observed in period t, Yipdq “ Ti,t“2 Yi,t“2pdq ` Ti,t“1 Yi,t“1pdq

is the potential outcome for unit i, Di “ 1tGi “ 2u is a treatment group dummy that equals one
if a unit is first treated in period two and zero if it is untreated in both periods. We also set Xi

to be a vector of (pre-treatment) covariates. Note that even here we already use the stationarity
condition that the joint distribution of pDi, Xiq is invariant to Ti,t“2 to move from the first to the
second line and establish (A.1).

To identify ATT p2q it is often constructive to first establish the identification of its conditional-
on-covariates analog, i.e., the conditional ATT in period two among units with covariates Xi,
ATTXi

p2q. This is exactly how we proceeded in Section 4.2. Under the stationarity condition, and
similarly to (A.1), we can express this quantity as38

ATTXi
p2q ” ErYi,t“2p1q|Di “ 1, Xis ´ ErYi,t“2p0q|Di “ 1, Xis

“ ErYip1q|Di “ 1, Xi, Ti,t“2 “ 1s ´ ErYip0q|Di “ 1, Xi, Ti,t“2 “ 1s. (A.2)

Next, we have to establish the identification of this quantity. As expected, we will again use
conditional parallel trends, no-anticipation, and overlap assumptions. The no-anticipation condi-
tion used here is the same as in the main text, i.e., we assume Assumption NA. The conditional
parallel trends and overlap assumptions need to be modified, as we now work with multiple parti-
tions of the data depending on treatment status and the period a unit is observed. In this sense,
we modify Assumptions CPT and SO to the following related, but different, assumptions. These

38To guarantee that all the conditional expectations in (A.2) are well-defined, we need an overlap condition that
guarantees that P pTi,t“2 “ 1, Di “ 1|Xiq ą 0 We discuss this below.
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modifications are warranted regardless of whether compositional changes are present; this step is
instead tied to data structure.39

Assumption CPT-RCS (2 ˆ 2 Conditional Parallel Trends with repeated cross-sections). We
assume that, with probability one,

ErYi,t“2p0q|Xi, Di “ 1, Ti,t“2 “ 1s ´ EωrYi,t“1p0q|Xi, Di “ 1, Ti,t“1 “ 1s

“ (A.3)

ErYi,t“2p0q|Xi, Di “ 0, Ti,t“2 “ 1s ´ ErYi,t“1p0q|Xi, Di “ 0, Ti,t“1 “ 1s.

Assumption SO-RCS (Strong overlap with repeated cross-sections). For some ϵ ą 0 and every
pd, sq P t0, 1u ˆ t0, 1u, ϵ ă P rDi “ d, Ti,t“2 “ s|Xis ă 1 ´ ϵ.

With this modification, we can now show that when Assumptions NA, CPT-RCS, and SO hold,
the conditional ATT parameter ATTXi

p2q is identified by40

ATTXi
p2q “pErYi|Di “ 1, Ti,t“2 “ 1, Xis ´ ErYi|Di “ 1, Ti,t“1 “ 1, Xisq

´ pErYi|Di “ 0, Ti,t“2 “ 1, Xis ´ ErYi|Di “ 0, Ti,t“1 “ 1, Xisq. (A.4)

This step provides a methodological justification to estimate the ATTXi
p2q’s using four conditional

expectations that only use the available data. In addition, it highlights that, under the stationarity
assumption, once we learn the ATTXi

p2qs, we can aggregate them using the covariate distribution
of treated units available from both time periods to get the ATT p2q. More formally, ATT p2q is
identified by

ATT p2q “ErATTXi
p2q|Di “ 1s

“ErATTXi
p2q|Di “ 1, Ti,t“2 “ 1sP pTi,t“2 “ 1|Di “ 1q

` ErATTXi
p2q|Di “ 1, Ti,t“1 “ 1sP pTi,t“1 “ 1|Di “ 1q,

where ATTXi
p2q is given by (A.4). This is the second place where ruling out compositional changes

and imposing the stationarity assumption helps: it allows you to use covariates from treated units
in the entire dataset to recover ATT p2q. The fact that you can pool data across all periods to
learn about ATT p2q translates to gains in power, as formally discussed by Sant’Anna and Zhao
(2020) and Sant’Anna and Xu (2023). The third place where the stationarity condition affects the
analysis is in the characterization of how “the most precise” (regular and asymptotically linear)
estimator for the ATT p2q should look. This point relates to the semi-parametric efficiency bound
and the construction of efficient (and doubly robust) estimators. As these points are slightly more

39In setups where we rule out compositional changes and impose the stationarity condition that the joint distribu-
tion of pDi, Xiq is invariant to Ti,t“2, we may not need to modify Assumption CPT. We do it here for transparency
purposes.

40We also require the assumption that the pooled repeated cross-section data tYi, Di, Xi, Ti,t“2, Ti,t“1u
n
i“1 is

iid, though this is fairly standard and uncontroversial; see, e.g., Abadie (2005) and Sant’Anna and Zhao (2020,
Assumption 1). We maintain this condition as an assumption throughout this section.
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technical, we refer the readers to Sant’Anna and Zhao (2020) and Sant’Anna and Xu (2023) for
more details about this.

Overall, ruling out compositional changes over time allows for the pooling of information across
the entire dataset, which has an impact on the definition of target parameters and leads to more
precise inference procedures. But what happens when this condition is not plausible? How does
this affect the analysis?

First, this matters for the definition of the treatment effect of interest. In setups where the
sampling varies across periods, we do not have a single notion of ATT p2q. Instead, we need to
accommodate the fact that the ATT p2q may vary across units sampled from different periods.
As such, when we do not rule out compositional changes, we must be explicit about the treated
subpopulation that we are interested in. It is common to focus on the average treatment effect in
period two among treated units that are also sampled in period two, that is,41

ATT p2|Tt“2 “ 1q ” ErYi,t“2p1q|Di “ 1, Ti,t“2 “ 1s ´ ErYi,t“2p0q|Di “ 1, Ti,t“2 “ 1s

“ ErYip1q|Di “ 1, Ti,t“2 “ 1s ´ ErYip0q|Di “ 1, Ti,t“2 “ 1s. (A.5)

Although (A.5) has the same statistical estimand as (A.1)—i.e., the formulas on the right-
hand side of the equation coincide—it has a very different interpretation. It is the ATT p2q among
units sampled in period 2, and is not an “overall” ATT p2q. One may think this difference is
merely cosmetic, but as discussed below, this has implications for constructing estimands when
covariates are important for identification. Where covariates do not play an important role, it is
simply a matter of changing the interpretation of your reported estimates (which also applies to
unconditional staggered setups, to be clear).

When covariates do play an important role, however, and when Assumptions CPT-RCS,
NA and SO-RCS hold—the conditional ATT parameter among units sampled in period two,
ATTXi

p2|Tt“2q is identified by

ATTXi
p2|Tt“2q “ pErYi|Di “ 1, Ti,t“2 “ 1, Xis ´ ErYi|Di “ 1, Ti,t“1 “ 1, Xisq

´pErYi|Di “ 0, Ti,t“2 “ 1, Xis ´ ErYi|Di “ 0, Ti,t“1 “ 1, Xisq, (A.6)

which, in turn, implies that ATT p2|Tt“2 “ 1q is identified by

ATT p2|Tt“2 “ 1q “ ErATTXi
p2|Tt“2q|Di “ 1, Ti,t“2 “ 1s. (A.7)

Several remarks are worth making. First, the statistical estimand in (A.6) is the same as when
one rules out compositional changes as in (A.4), suggesting that, once again, what changes in
this step is the interpretation. However, these interpretative issues have direct consequences on
the appropriate method for aggregating across covariate values. As clearly stated in (A.7), in

41One may also be interested in the ATT in period two among treated units that are sampled in period one.
The arguments required to establish (point) identification of this parameter differ from those we use here. A main
challenge is that we do not observe ErYi,t“2p1q|Di “ 1, Ti,t“1 “ 1s, and the parallel trends assumption we leverage
does not involve treated potential outcomes.
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the presence of potential compositional changes, one is not allowed to pool information across
periods to identify (and also estimate and make inference) about ATT p2|Tt“2 “ 1q. As discussed
in Sant’Anna and Xu (2023), ignoring these issues and pooling data from all periods in the presence
of compositional changes leads to a bias that is important to be aware of. We refer the reader to
Sant’Anna and Xu (2023) for a discussion related to unbalanced panels and also on a discussion
about doubly robust and semiparametric efficient DiD estimators under compositional changes. We
are not aware of any papers that formally extend the discussion in Sant’Anna and Xu (2023) to
staggered DiD designs. Still, this extension is surely possible by following our forward-engineering
approach to DiD.

We close this section by highlighting that, in practice, it is possible to test for composi-
tional changes by comparing the estimates from estimators that impose it and those that do
not. Sant’Anna and Xu (2023) discuss Hausman-type tests in the two-period setting, though one
can extend those to more general setups. We also highlight that when it comes to DiD setups
with staggered adoption, some equivalence results discussed in Section 5.2 no longer hold with
repeated cross-sections or unbalanced panel data. For instance, the Sun and Abraham (2021)
regression-based strategy to estimate ATT pg, tq’s using (5.11) no longer coincide with Callaway
and Sant’Anna (2021) estimators using the analogous of (5.10), i.e.,

zATT neverpg, tq “ pY G“g,t ´ Y G“g,t“g´1q ´ pY G“8,t ´ Y G“8,t“g´1q,

with Y G“a,t“s being the sample mean of Y among units that belong in group G “ a and are
observed in period t “ s. In fact, it is unclear exactly what estimand is being recovered when
one uses (5.11) with an unbalanced panel. If one replaces unit fixed effects with treatment group
dummies in (5.11), such equivalence is restored, though we suspect that many practitioners do
not use this alternative specification. In general, we caution against extrapolating from a well-
motivated regression specification that was studied under one specific setup to another related but
inherited different framework. This practice has led to many issues in DiD, which can be fully
avoided by adopting the forward-engineering approach discussed in this paper.

References

Abadie, Alberto, “Semiparametric Difference-in-Difference Estimators,” The Review of Economic Stud-
ies, 2005, 72, 1–19.

, Susan Athey, Guido W. Imbens, and Jeffrey M. Wooldridge, “Sampling-Based versus Design-
Based Uncertainty in Regression Analysis,” Econometrica, January 2020, 88 (0), 265–296.

, , , and Jeffrey Wooldridge, “When Should You Adjust Standard Errors for Clustering?,” The
Quarterly Journal of Economics, 2023, 138 (1), 1–35.

Abbring, Jaap H. and Gerard J. van den Berg, “The nonparametric identification of treatment
effects in duration models,” Econometrica, 2003, 71 (5), 1491–1517.

68



Angrist, Joshua D., “Estimating the Labor Market Impact of Voluntary Military Service Using Social
Security Data on Military Applicants,” Econometrica, 1998, 66 (2), 249–288.

and Guido W. Imbens, “Two-Stage Least Squares Estimation of Average Causal Effects in Models
with Variable Treatment Intensity,” Journal of the American Statistical Association, 1995, 90 (430),
431–442.

Arkhangelsky, Dmitry, Guido W. Imbens, Lihua Lei, and Xiaoman Luo, “Design-Robust Two-
Way-Fixed-Effects Regression For Panel Data,” Quantitative Economics, 2024, 15 (4).

, Susan Athey, David A. Hirshberg, Guido W. Imbens, and Stefan Wager, “Synthetic
Difference-in-Differences,” American Economic Review, 2021, 111 (12), 4088–4118.

Aronow, P. M. and Cyrus Samii, “Does regression produce representative estimates of causal effects?,”
American Journal of Political Science, 2015, 60 (1), 250–267.

Ashenfelter, Orley C. and David Card, “Using the longitudinal structure of earnings to estimate the
effect of training programs,” The Review of Economics and Statistics, 1985, 67 (4), 648–660.

Athey, Susan and Guido Imbens, “Design-based Analysis in Difference-In-Differences Settings with
Staggered Adoption,” Journal of Econometrics, 2022, 226 (1), 62–79.

and Guido W. Imbens, “Identification and Inference in Nonlinear Difference in Differences Models,”
Econometrica, 2006, 74 (2), 431–497.

Baker, Andrew C, David F Larcker, and Charles CY Wang, “How much should we trust staggered
difference-in-differences estimates?,” Journal of Financial Economics, 2022, 144 (2), 370–395.

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan, “How Much Should We Trust
Differences-in-Differences Estimates?,” Quarterly Journal of Economics, February 2004, 119 (1), 249–
275.

Bilinski, Alyssa and Laura A Hatfield, “Nothing to see here? Non-inferiority approaches to parallel
trends and other model assumptions,” 2018. Working Paper.

Black, Bernard, Alex Hollingsworth, Leticia Nunes, and Kosali Simon, “Simulated power anal-
yses for observational studies: An application to the Affordable Care Act Medicaid expansion,” Journal
of Public Economics, 2022, 213, 104713.

Bonhomme, Stéphane and Ulrich Sauder, “Recovering Distributions in Difference-in-Differences
Models: a Comparison of Selective and Comprehensive Schooling,” Review of Economics and Statistics,
2011, 93 (May), 479–494.

Borgschulte, Mark and Jacob Vogler, “Did the ACA Medicaid expansion save lives?,” Journal of
Health Economics, 2020, 72, 102333.

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess, “Revisiting Event Study Designs: Robust and
Efficient Estimation,” Review of Economic Studies, 2024, Forthcoming.

Braghieri, Luca, Ro’ee Levy, and Alexey Makarin, “Social Media and Mental Health,” American
Economic Review, 2022, 112 (11), 3660–3693.

Caetano, Carolina and Brantly Callaway, “Difference-in-Differences when Parallel Trends Holds
Conditional on Covariates,” arXiv:2406.15288, 2024.

69



, , Stroud Payne, and Hugo Sant’Anna Rodrigues, “Difference in differences with time-varying
covariates,” 2022. Working Paper.

Callaway, Brantly, “Bounds on distributional treatment effect parameters using panel data with an
application on job displacement,” Journal of Econometrics, 2021, 222 (2), 861–881.

, “Difference-in-Differences for Policy Evaluation,” in Klaus F. Zimmermann, ed., Handbook of Labor,
Human Resources and Population Economics, Cham: Springer International Publishing, 2023, pp. 1–61.

and Pedro HC Sant’Anna, “Difference-in-differences with multiple time periods,” Journal of Econo-
metrics, 2021, 225 (2), 200–230.

and Sonia Karami, “Treatment effects in interactive fixed effects models with a small number of time
periods,” Journal of Econometrics, 2023, 233 (1), 184–208.

and Tong Li, “Quantile Treatment Effects in Difference in Differences Models with Panel Data,”
Quantitative Economics, 2019, 10 (4), 1579–1618.

, Andrew Goodman-Bacon, and Pedro H. C. Sant’Anna, “Difference-in-Differences with a Con-
tinuous Treatment,” arXiv:2107.02637 [econ], 2021.

, , and , “Event Studies with a Continuous Treatment,” AEA Papers and Proceedings, May 2024,
114, 601–605.

, Tong Li, and Tatsushi Oka, “Quantile Treatment Effects in Difference in Differences Models under
Dependence Restrictions and with Only Two Time Periods,” Journal of Econometrics, 2018, 206 (2),
395–413.

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller, “Bootstrap-Based Improvements
for Inference with Clustered Errors,” Review of Economics and Statistics, August 2008, 90 (3), 414–427.

Caron, Laura, “Triple Difference Designs with Heterogeneous Treatment Effects,” arXiv:2502.19620,
2025.

Cengiz, Doruk, Arindrajit Dube, Attila Lindner, and Ben Zipperer, “The Effect of Minimum
Wages on Low-Wage Jobs,” The Quarterly Journal of Economics, August 2019, 134 (3), 1405–1454.

Centers for Disease Control and Prevention, “Vital Statistics Data,” https://www.cdc.gov/nchs/

nvss/index.htm 2024. Accessed: 2024-09-17.

Chabé-Ferret, Sylvain, “Analysis of the bias of Matching and Difference-in-Difference under alternative
earnings and selection processes,” Journal of Econometrics, 2015, 185 (1), 110–123.

Chang, Neng-Chieh, “Double/debiased machine learning for difference-in-differences,” Econometrics
Journal, 2020, 23, 177–191.

Chen, Xiaohong, Pedro H. C. Sant’Anna, and Haitian Xie, “Efficient Difference-in-Differences and
Event Study Estimators,” Working Paper, 2024.

Chernozhukov, Victor, Iván Fernández-Val, and Ye Luo, “The Sorted Effects Method: Discovering
Heterogeneous Effects Beyond Their Averages,” Econometrica, 2018, 86 (6), 1911–1938.

, Mert Demirer, Esther Duflo, and Iván Fernández-Val, “Fisher-Schultz Lecture: Generic Ma-
chine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with an
Application to Immunization in India,” arXiv: 1712.04802, 2023, pp. 1–81.

70

https://www.cdc.gov/nchs/nvss/index.htm
https://www.cdc.gov/nchs/nvss/index.htm


Conley, Timothy and Christopher Taber, “Inference with “Difference in Differences” with a Small
Number of Policy Changes,” Review of Economics and Statistics, February 2011, 93 (1), 113–125.

Crump, Richard K, V Joseph Hotz, Guido W Imbens, and Oscar A Mitnik, “Dealing with
limited overlap in estimation of average treatment effects,” Biometrika, 2009, 96 (1), 187–199.

Currie, Janet and Hannes Schwandt, “Mortality Inequality: The Good News from a County-Level
Approach,” Journal of Economic Perspectives, May 2016, 30 (2), 29–52.

, Henrik Kleven, and Esmée Zwiers, “Technology and Big Data Are Changing Economics: Mining
Text to Track Methods,” AEA Papers and Proceedings, 2020, 110, 42–48.

de Chaisemartin, Clément and Xavier D’Haultfoeuille, “Fuzzy Differences-in-Differences,” The
Review of Economic Studies, 2018, 85 (2), 999–1028.

and , “Two-way fixed effects estimators with heterogeneous treatment effects,” American Economic
Review, 2020, 110 (9), 2964–2996.

and , “Difference-in-Differences Estimators of Intertemporal Treatment Effects,” 2023. Working
Paper.

and , “Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a
survey,” Econometrics Journal, 2023, Forthcoming.

, , Félix Pasquier, and Gonzalo Vazquez-Bare, “Difference-in-Differences for Continuous Treat-
ments and Instruments with Stayers,” arXiv:2201.06898, 2024.

, Xavier D’Haultfœuille, and Gonzalo Vazquez-Bare, “Difference-in-Difference Estimators with
Continuous Treatments and No Stayers,” AEA Papers and Proceedings, May 2024, 114, 610–613.

Deshpande, Manasi and Yue Li, “Who Is Screened Out? Application Costs and the Targeting of
Disability Programs,” American Economic Journal: Economic Policy, November 2019, 11 (4), 213–48.

Dette, Holger and Martin Schumann, “Testing for Equivalence of Pre-Trends in Difference-in-
Differences Estimation,” Journal of Business & Economic Statistics, 2024, 42 (4).

DiNardo, John and David S. Lee, “Chapter 5 - Program Evaluation and Research Designs,” in Orley
Ashenfelter and David Card, eds., Handbook of Labor Economics, Vol. 4, Elsevier, 2011, pp. 463–536.

Donald, Stephen G. and Kevin Lang, “Inference with Difference-in-Differences and other Panel Data,”
Review of Economics and Statistics, 2007, 89 (2), 221–233.

Dube, Arindrajit, Daniele Girardi, Òscar Jordà, and Alan M Taylor, “A Local Projections
Approach to Difference-in-Differences,” Working Paper 31184, National Bureau of Economic Research
2024.

Fadlon, Itzik and Torben Heien Nielsen, “Family Labor Supply Responses to Severe Health Shocks:
Evidence from Danish Administrative Records,” American Economic Journal: Applied Economics, July
2021, 13 (3), 1–30.

Fan, Yanqin and Zhentao Yu, “Partial Identification of Distributional and Quantile Treatment Effects
in Difference-in-Differences Models,” Economics Letters, 2012, 115 (3), 511–515.

Fernández-Val, Iván, Jonas Meier, Aico van Vuuren, and Francis Vella, “Distribution Regression
Difference-in-Differences,” arXiv preprint arXiv:2409.02311, 2024.

, , , and , “Distribution Regression Difference-In-Differences,” arXiv:2409.00123, 2024.

71



Finkelstein, Amy and Robin McKnight, “What Did Medicare Do? The Initial Impact of Medicare on
Mortality and Out-of-Pocket Medical Spending,” Journal of Public Economics, 2008, 92 (7), 1644–1668.

Firpo, Sergio and Cristine Pinto, “Identification and Estimation of Distributional Impacts of In-
terventions Using Changes in Inequality Measures,” Journal of Applied Econometrics, 2016, 31 (3),
457–486.

Freyaldenhoven, Simon, Christian Hansen, and Jesse M Shapiro, “Pre-Event Trends in the Panel
Event-Study Design,” American Economic Review, 2019, 109 (9), 3307–3338.

, , Jorge Pérez-Pérez, and Jesse M. Shapiro, “Visualization, identification, and estimation
in the linear panel event-study design,” in “Advances in Economics and Econometrics: Twelfth World
Congress” 2024. Forthcoming.

Gardner, John, “Two-stage differences in differences,” Working Paper, 2021.

Ghanem, Dalia, Désiré Kédagni, and Ismael Mourifié, “Evaluating the Impact of Regulatory
Policies on Social Welfare in Difference-in-Difference Settings,” arXiv:2306.04494, 2023.

, Pedro H. C. Sant’Anna, and Kaspar Wüthrich, “Selection and parallel trends,”
arXiv:2203.09001, 2023.

Goldsmith-Pinkham, Paul, Peter Hull, and Michal Kolesár, “Contamination Bias in Linear Re-
gressions,” American Economic Review, 2024, Forthcoming.

Goodman-Bacon, Andrew, “Difference-in-differences with variation in treatment timing,” Journal of
Econometrics, 2021, 225 (2), 254–277.

Graham, Bryan, Cristine Pinto, and Daniel Egel, “Inverse Probability Tilting for Moment Condition
Models with Missing Data,” The Review of Economic Studies, 2012, 79 (3), 1053–1079.

Gruber, Jonathan, “The Incidence of Mandated Maternity Benefits,” American Economic Review, June
1994, 84 (3), 622–641.

Harmon, Nikolaj A., “Difference-in-Differences and Efficient Estimation of Treatment Effects,” Working
Paper, 2024.

Heckman, James and Richard Robb, “Alternative methods for evaluating the impact of interventions,”
in James Heckman and Burton Singer, eds., Longitudinal Analysis of Labor Market Data, Cambridge:
Cambridge University Press, 1985, pp. 156–246.

Heckman, James J., “Causal Parameters and Policy Analysis in Economics: A Twentieth Century
Retrospective,” The Quarterly Journal of Economics, 2000, 115 (1), 45–97.

, Hidehiko Ichimura, and Petra Todd, “Matching as an Econometric Evaluation Estimator: Ev-
idence from Evaluating a Job Training Programme,” The Review of Economic Studies, 1997, 64 (4),
605–654.

, Jeffrey Smith, and Nancy Clements, “Making The Most Out Of Programme Evaluations and
Social Experiments: Accounting For Heterogeneity in Programme Impacts,” The Review of Economic
Studies, 1997, 64 (4), 487––535.

Hong, Seung-Hyun, “Measuring the effect of Napster on recorded music sales: difference-in-differences
estimates under compositional changes,” Journal of Applied Econometrics, 2013, 28 (2), 297–324.

72



Imai, Kosuke and In Song Kim, “On the use of two-way fixed effects regression models for causal
inference with panel data,” Political Analysis, 2021, 29 (3), 405–415.

, , and Erik H. Wang, “Matching Methods for Causal Inference with Time-Series Cross-Sectional
Data,” American Journal of Political Science, 2023, 67 (3), 587–605.

Imbens, Guido, Nathan Kallus, and Xiaojie Mao, “Controlling for Unmeasured Confounding
in Panel Data Using Minimal Bridge Functions: From Two-Way Fixed Effects to Factor Models,”
arXiv:2108.03849, 2021.

Imbens, Guido W and Donald B Rubin, Causal inference in statistics, social, and biomedical sciences,
Cambridge university press, 2015.

Kahn-Lang, Ariella and Kevin Lang, “The Promise and Pitfalls of Differences-in-Differences: Reflec-
tions on 16 and Pregnant and Other Applications,” Journal of Business and Economic Statistics, 2020,
38 (3), 613–620.

Kennedy, Edward H, Zongming Ma, Matthew D McHugh, and Dylan S Small, “Non-parametric
methods for doubly robust estimation of continuous treatment effects,” Journal of the Royal Statistical
Society. Series B (Statistical Methodology), 2017, 79 (4), 1229–1245.

Khan, Shakeeb and Elie Tamer, “Irregular Identification, Support Conditions, and Inverse Weight
Estimation,” Econometrica, 2010, 78 (6), 2021–2042.

Lechner, Michael, “The Estimation of Causal Effects by Difference-in-Difference Methods,” Foundations
and Trends in Econometrics, 2011, 4, 165–224.

Lee, Soo Jeong and Jeffrey M. Wooldridge, “A Simple Transformation Approach to Difference-in-
Differences Estimation for Panel Data,” Working Paper, 2023. Available at SSRN: http://dx.doi.org/
10.2139/ssrn.4516518.

Liu, Licheng, Ye Wang, and Yiqing Xu, “A Practical Guide to Counterfactual Estimators for Causal
Inference with Time-Series Cross-Sectional Data,” American Journal of Political Science, 2024, 68 (1),
160–176.

Ma, Yukun, Pedro H. C. Sant’Anna, Yuya Sasaki, and Takuya Ura, “Doubly Robust Estimators
with Weak Overlap,” arXiv:2304.08974, 2023.

Malani, Anup and Julian Reif, “Interpreting pre-trends as anticipation: Impact on estimated treatment
effects from tort reform,” Journal of Public Economics, 2015, 124, 1–17.

Manski, Charles F. and John V. Pepper, “How Do Right-to-Carry Laws Affect Crime Rates? Coping
with Ambiguity Using Bounded-Variation Assumptions,” Review of Economics and Statistics, 2018, 100
(2), 232–244.

Marcus, Michelle and Pedro H. C. Sant’Anna, “The role of parallel trends in event study settings:
An application to environmental economics,” Journal of the Association of Environmental and Resource
Economists, 2021, 8 (2), 235–275.

Marx, Philip, Elie Tamer, and Xun Tang, “Parallel Trends and Dynamic Choices,” Journal of
Political Economy Microeconomics, 2024, 2 (1), 129–171.

Meyer, Bruce, W. Kip Viscusi, and David Durbin, “Workers’ Compensation and Injury Duration:
Evidence from a Natural Experiment,” The American Economic Review, 1995, 85 (3), 322–340.

73

http://dx.doi.org/10.2139/ssrn.4516518
http://dx.doi.org/10.2139/ssrn.4516518


Miller, Sarah, Norman Johnson, and Laura R Wherry, “Medicaid and mortality: new evidence
from linked survey and administrative data,” The Quarterly Journal of Economics, 2021, 136 (3), 1783–
1829.

Miyaji, Sho, “Instrumented Difference-in-Differences with Heterogeneous Treatment Effects,”
arXiv:2405.12083, 2024.

Mogstad, Magne and Alexander Torgovitsky, “Chapter 1 - Instrumental variables with unobserved
heterogeneity in treatment effects,” in Christian Dustmann and Thomas Lemieux, eds., Handbook of
Labor Economics, Vol. 5, Elsevier, 2024, pp. 1–114.

Mora, Ricardo and Iliana Reggio, “Alternative diff-in-diffs estimators with several pretreatment pe-
riods,” Econometric Reviews, 2019, 38 (5), 465–486.

Olden, Andreas and Jarle Møen, “The triple difference estimator,” The Econometrics Journal, 2022,
25 (3), 531–553.

Olea, José Luis Montiel and Mikkel Plagborg-Moller, “Simultaneous confidence bands: Theory,
implementation, and an application to SVARs,” Journal of Applied Econometrics, 2018, 33 (7), 943–964.

Ortiz-Villavicencio, Marcelo and Pedro H. C. Sant’Anna, “Better Understanding Triple Differences
Estimators,” 2025. Working paper.

Poirier, Alexandre and Tymon Sloczynski, “Quantifying the Internal Validity of Weighted Esti-
mands,” arXiv:2404.14603, 2024.

Rambachan, Ashesh and Jonathan Roth, “A More Credible Approach to Parallel Trends,” Review
of Economic Studies, 2023, 90 (5), 2555–2591.

and , “Design-Based Uncertainty for Quasi-Experiments,” arXiv:2008.00602, 2024.

Robins, James, “A New Approach To Causal Inference in Mortality Studies With a Sustained Exposure
Period - Application To Control of the Healthy Worker Survivor Effect,” Mathematical Modelling, 1986,
7, 1393–1512.

Rosenbaum, Paul R. and Donald B. Rubin, “The Central Role of the Propensity Score in Observa-
tional Studies for Causal Effects,” Biometrika, April 1983, 70 (1), 41–55.

Roth, Jonathan, “Pretest with caution: Event-study estimates after testing for parallel trends,” Ameri-
can Economic Review: Insights, 2022, 4 (3), 305–322.

and Pedro H. C. Sant’Anna, “Efficient Estimation for Staggered Rollout Designs,” Journal of
Political Economy Microeconomics, 2023, 1 (4), 669–709.

and , “When Is Parallel Trends Sensitive to Functional Form?,” Econometrica, 2023, 91 (2), 737–747.

, , Alyssa Bilinski, and John Poe, “What’s Trending in Difference-in-Differences? A Synthesis of
the Recent Econometrics Literature,” Journal of Econometrics, 2023, 235 (2), 2218–2244.

Rubin, Donald, “Estimating Causal Effects of Treatments in Randominzed and Nonrandomized Studies,”
Journal of Educational Psychology, 1974, 66 (5), 688–701.

Sant’Anna, Pedro H. C. and Jun Zhao, “Doubly Robust Difference-in-Differences Estimators,” Jour-
nal of Econometrics, 2020, Forthcoming.

and Qi Xu, “Difference-in-Differences with Compositional Changes,” arXiv:2304.14256, 2023.

74



Sasaki, Yuya and Takuya Ura, “Estimation and inference for moments of ratios with robustness against
large trimming bias,” Econometric Theory, 2022, 38 (1), 66–112.

Seaman, Shaun R and Stijn Vansteelandt, “Introduction to Double Robust Methods for Incomplete
Data,” Statistical Science, 2018, 33 (2), 184–197.

Semmelweis, Ignaz, Etiology, Concept and Prophylaxis of Childbed Fever, The University of Wisconsin
Press, 1983.

Sloczynski, Tymon, “Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller
Groups Get Larger Weights,” The Review of Economics and Statistics, 2022, 104 (3), 501—-509.

Smucler, Ezequiel, Andrea Rotnitzky, and James M. Robins, “A unifying approach for doubly-
robust ℓ1 regularized estimation of causal contrasts,” arXiv:1904.03737, 2019.

Snow, John, On the Mode of Communication of Cholera, London: John Churchill, 1855.

Solon, Gary, Steven J. Haider, and Jeffrey M. Wooldridge, “What Are We Weighting For?,” The
Journal of Human Resources, 2015, 50 (2), 301–316.

Sommers, Benjamin Daniel and Arnold M Epstein, “US governors and the Medicaid expansion—no
quick resolution in sight,” New England Journal of Medicine, 2013.

Strezhnev, Anton, “Semiparametric weighting estimators for multi-period differencein-differences de-
signs,” 2018. Working Paper.

, “Decomposing Triple-Differences Regression under Staggered Adoption,” arXiv:2307.02735, 2023.

Sun, Liyang and Sarah Abraham, “Estimating dynamic treatment effects in event studies with het-
erogeneous treatment effects,” Journal of Econometrics, 2021, 225 (2), 175–199.

Tchetgen, Eric J. Tchetgen, Chana Park, and David B. Richardson, “Universal Difference-in-
Differences for Causal Inference in Epidemiology,” Epidemiology, 2024, 35 (1), 16–22.

Wooldridge, Jeffrey M., “Cluster-Sample Methods in Applied Econometrics,” American Economic
Review P&P, 2003, 93 (2), 133–138.

, “Two-way fixed effects, the two-way mundlak regression, and difference-in-differences estimators,” 2021.
Working Paper.

, “Simple Approaches to Nonlinear Difference-in-Differences with Panel Data,” Econometrics Journal,
2023, Forthcoming.

Wyse, Angela and Bruce Meyer, “Saved by Medicaid: New Evidence on Health Insurance and Mor-
tality from the Universe of Low-Income Adults,” Working Paper, 2024.

Yanagi, Takahide, “An Effective Treatment Approach to Difference-in-Differences with General Treat-
ment Patterns,” arXiv:2212.13226, 2023.

75


	Introduction
	Medicaid and Mortality: The running example
	2x2 DiD designs
	Causal effects and target parameters: the ATT
	Identifying assumptions: parallel trends
	Estimation and inference: 4 means or one regression?

	Incorporating covariates into 2x2 DiD
	Covariate balance: Is unconditional parallel trends plausible?
	DiD with covariates: Identification under conditional parallel trends
	DiD estimation with covariates: TWFE
	DiD estimators with covariates that target the ATT(2)
	Heterogeneity analysis

	DiD designs with multiple time periods
	Simple event studies 2xT
	Event study estimates in the post-treatment periods
	Event study estimates in the pre-periods
	Estimation and aggregating across time in event-studies
	Covariates in event studies

	Staggered treatment adoption (GxT)
	Building block parameters with staggered adoption
	Identification with staggered designs
	Estimators for staggered designs without covariates
	Aggregating group-time average treatment effects
	Estimators for staggered designs with covariates

	Limitations of TWFE regressions

	Conclusion
	Some additional DiD-related procedures
	Setups with treatment turning on and off
	DiD setups with continuous or multi-valued treatments
	Triple Differences
	Distributional DiD procedures
	Repeated cross-sections and unbalanced panel data


